Skip to main content

Advertisement

Log in

Matrix metalloproteinases: key regulators in the pathogenesis of chemotherapy-induced mucositis?

  • Mini Review
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Chemotherapy is an effective anticancer treatment; however, it induces mucositis in a wide range of patients. Mucositis is the term used to describe the damage caused by radiation and chemotherapy to mucous membranes of the alimentary tract. This damage causes pain and ulceration, vomiting, bloating and diarrhoea, depending on the area of the alimentary tract affected. Although treatment is available for a small subset of patients suffering from mucositis, the majority rely on pain relief as their only treatment option. Much progress has been made in recent years into understanding the pathobiology underlying the development of mucositis. It is well established that chemotherapy causes prominent small intestinal and colonic damage as a result of up-regulation of stress response genes and pro-inflammatory cytokines. However, better understanding of the mediators of this damage is still required in order to target appropriate treatment strategies. Possible mediators of mucositis which have not been well researched are the matrix metalloproteinases (MMPs). MMPs have been shown to function in several of the pathways which are known to be up-regulated in mucositis and contribute to tissue injury and inflammation in many pathological conditions. This prompts the consideration of MMPs as possibly being key mediators in mucositis development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sonis S (2007) Pathobiology of oral mucositis: novel insights and opportunities. J Support Oncol 5:s3–s11

    Google Scholar 

  2. Gibson R, Bowen J, Cummins A, Keefe D (2005) Relationship between dose of methotrexate, apoptosis, p53/p21 expression and intestinal crypt proliferation in the rat. Clin Exp Med 4:188–195

    Article  PubMed  CAS  Google Scholar 

  3. Yeoh A, Bowen J, Gibson R, Keefe D (2005) Nuclear factor κB (NFκB) and cyclooxygenase-2 (COX-2) expression in the irradiated colorectum is associated with subsequent histopathological changes. Int J Radiat Oncol Biol Phys 63:1295–1303

    Article  PubMed  CAS  Google Scholar 

  4. Sonis S (2004) The pathobiology of mucositis. Nat Rev Cancer 4:277–284

    Article  PubMed  CAS  Google Scholar 

  5. Keefe D, Schubert M, Elting L, Sonis S, Epstein J, Raber-Durlacher J, Migliorati C, McGuire D, Hutchins R, Peterson D (2007) Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer 109:820–831

    Article  PubMed  CAS  Google Scholar 

  6. Keefe D (2004) Gastrointestinal mucositis: a new biological model. Support Care Cancer 12:6–9

    Article  PubMed  Google Scholar 

  7. Aprile G, Ramoni M, Keefe DM, Sonis S (2008) Application of distance matrices to define associations between acute toxicities in colorectal cancer patients receiving chemotherapy. Cancer 112:284–292

    Article  PubMed  Google Scholar 

  8. Murphy B (2007) Clinical and economic consequences of mucositis induced by chemotherapy and/or radiation therapy. J Support Oncol 5:13–21

    PubMed  Google Scholar 

  9. Bowen J, Gibson R, Tsykin A, Stringer A, Logan R, Keefe D (2007) Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy. Int J Cancer 121:1847–1856

    Article  PubMed  CAS  Google Scholar 

  10. Sonis S, Scherer J, Phelan S, Lucey C, Barron J, O’Donnell K, Brennan R, Pan H, Busse P, Haley J (2002) The gene expression sequence of radiated mucosa in an animal mucositis model. Cell Prolif 35:s92–s102

    Article  Google Scholar 

  11. Logan R, Gibson R, Bowen J, Stringer A, Sonis S, Keefe D (2008) Characterisation of mucosal changes in the alimentary tract following administration of irinotecan: implications for the pathobiology of mucositis. Cancer Chemother Pharmacol 62:33–41

    Article  PubMed  CAS  Google Scholar 

  12. Clark I, Swingler T, Sampieri C, Edwards D (2008) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40:1362–1378

    Article  PubMed  CAS  Google Scholar 

  13. Manicone A, McGuire J (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19:34–41

    Article  PubMed  CAS  Google Scholar 

  14. Wolf M, Albrecht S, Marki C (2008) Proteolytic processing of chemokines: implications in physiological and pathological conditions. Int J Biochem Cell Biol 40:1185–1198

    Article  PubMed  CAS  Google Scholar 

  15. Louis E, Ribbens C, Godon A, Franchimont D, De Groote D, Hardy N, Boniver J, Belaiche J, Malaise M (2000) Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by inflamed mucosa in inflammatory bowel disease. Clin Exp Immunol 120:241–246

    Article  PubMed  CAS  Google Scholar 

  16. Meijer M, Mieremet-Ooms M, Van Der Zon A, Van Duijn W, Van Hogezand R, Sier C, Hommes D, Lamers C, Verspaget H (2007) Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn’s disease phenotype. Dig Liver Dis 39:733–739

    Article  PubMed  CAS  Google Scholar 

  17. Solberg A, Holmdahl L, Falk P, Palmgren I, Ivarsson M (2008) A local imbalance between MMP and TIMP may have an implication on the severity and course of appendicitis. Int J Colorectal Dis 23:611–618

    Article  PubMed  Google Scholar 

  18. Carneiro-Filho B, Lima I, Araujo D, Cavalcante M, Carvalho G, Brito G, Lima V, Monteiro S, Santos F, Ribeiro R, Lima A (2004) Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Dig Dis Sci 49:65–72

    Article  PubMed  CAS  Google Scholar 

  19. Gibson R, Bowen J, Alvarez E, Finnie J, Keefe D (2007) Establishment of a single-dose irinotecan model of gastrointestinal mucositis. Chemotherapy 53:360–369

    Article  PubMed  CAS  Google Scholar 

  20. Keefe D (2000) Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 47:632–637

    Article  PubMed  CAS  Google Scholar 

  21. Sonis S (2004) A biological approach to mucositis. J Support Oncol 2:21–32

    PubMed  Google Scholar 

  22. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  PubMed  CAS  Google Scholar 

  23. Sonis S (2002) The biologic role for nuclear factor-kappaB in disease and its potential involvement in mucosal injury associated with anti-neoplastic therapy. Crit Rev Oral Biol Med 13:380–389

    Article  PubMed  Google Scholar 

  24. Logan R, Stringer A, Bowen J, Yeoh A, Gibson R, Sonis S, Keefe D (2007) The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev 33:448–460

    Article  PubMed  CAS  Google Scholar 

  25. Sengupta N, MacDonald T (2007) The role of matrix metalloproteinases in stromal/epithelial interactions in the gut. Physiology 22:401–409

    Article  PubMed  CAS  Google Scholar 

  26. Malemud C (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701

    Article  PubMed  CAS  Google Scholar 

  27. Reynolds J (1996) Collagenases and tissue inhibitors of metalloproteinases: a functional balance in tissue degradation. Oral Dis 2:70–76

    PubMed  CAS  Google Scholar 

  28. Meredith J, Fazeli B, Schwartz M (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953–961

    PubMed  CAS  Google Scholar 

  29. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  PubMed  CAS  Google Scholar 

  30. Pender S, MacDonald T (2004) Matrix metalloproteinases and the gut-new roles for old enzymes. Curr Opin Pharmacol 4:546–550

    Article  PubMed  CAS  Google Scholar 

  31. Fu X, Parks W, Heinecke J (2008) Activation and silencing of matrix metalloproteinases. Semin Cell Dev Biol 19:2–13

    Article  PubMed  CAS  Google Scholar 

  32. Van Wart H, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582

    Article  PubMed  Google Scholar 

  33. Gill S, Parks W (2007) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  PubMed  Google Scholar 

  34. Denhardt D, Feng B, Edwards D, Cocuzzi E, Malyankar U (1993) Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol Ther 59:329–341

    Article  PubMed  CAS  Google Scholar 

  35. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  36. Morrison C, Overall C (2006) TIMP independence of matrix metalloproteinase (MMP)-2 activation by membrane type 2 (MT2)-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin C domains. J Biol Chem 281:26528–26539

    Article  PubMed  CAS  Google Scholar 

  37. Zucker S, Cao J, Chen W (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    Article  PubMed  CAS  Google Scholar 

  38. Booth D, Potten C (2001) Protection against mucosal injury by growth factors and cytokines. J Natl Cancer Inst 29:16–20

    CAS  Google Scholar 

  39. Michael H, Gordon I, Wojciech P (2003) Histology: a text and atlas, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  40. Beaulieu J (1997) Extracellular matrix components and integrins in relationship to human intestinal epithelial cell differentiation. Prog Histochem Cytochem 31:1–78

    PubMed  CAS  Google Scholar 

  41. Yurchenco P, Schittny J (1990) Molecular architecture of basement membranes. FASEB J 4:1577–1590

    PubMed  CAS  Google Scholar 

  42. Frisch S, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  PubMed  CAS  Google Scholar 

  43. Carroll K, Wong T, Drabik D, Chang E (1988) Differentiation of rat small intestinal epithelial cells by extracellular matrix. Am J Physiol 254:g355–g360

    PubMed  CAS  Google Scholar 

  44. Hahn U, Stallmach A, Hahn E, Riecken E (1990) Basement membrane components are potent promoters of rat intestinal epithelial cell differentiation in vitro. Gastroenterology 98:322–335

    PubMed  CAS  Google Scholar 

  45. Blau H, Baltimore D (1991) Differentiation requires continuous regulation. J Cell Biol 112:781–783

    Article  PubMed  CAS  Google Scholar 

  46. Adams J, Watt F (1993) Regulation of development and differentiation by extracellular matrix. Development 117:1183–1198

    PubMed  CAS  Google Scholar 

  47. Potten C, Booth C, Pritchard D (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78:219–243

    Article  PubMed  CAS  Google Scholar 

  48. MacDonald T, Pender S (1998) Proteolytic enzymes in inflammatory bowel disease. Inflamm Bowel Dis 4:157–164

    Article  PubMed  CAS  Google Scholar 

  49. Shoval L, Kushner J, Sukhu B, Wood R, Kiss T, Lawrence H, Tenenbaum H (2005) The relationship between mouth rinse matrix metalloproteinases (MMP-1, 8, 13) and albumin levels with the degree of oral mucositis in allogeneic stem cell transplant patients. Bone marrow Transplant 36:33–38

    Article  PubMed  CAS  Google Scholar 

  50. Vuotila T, Ylikontiola L, Sorsa T, Luoto H, Hanemaaijer R, Salo T, Tjäderhane L (2002) The relationship between MMPs and pH in whole saliva of radiated head and neck cancer patients. J Oral Pathol Med 31:329–338

    Article  PubMed  CAS  Google Scholar 

  51. Morvan F, Baroukh B, Ledoux D, Caruelle J, Barritault D, Godeau G, Saffar J (2004) An engineered biopolymer prevents mucositis induced by 5-fluorouracil in hamsters. Am J Pathol 164:739–746

    PubMed  CAS  Google Scholar 

  52. Borden P, Heller R (1997) Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr 7:159–178

    PubMed  CAS  Google Scholar 

  53. Westermarck J, Seth A, Kahari V (1997) Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors. Oncogene 14:2651–2660

    Article  PubMed  CAS  Google Scholar 

  54. Saalbach A, Arnhold J, Lessig J, Simon J, Anderegg U (2008) Human Thy-1 induces secretion of matrix metalloproteinase-9 and CXCL8 from human neutrophils. Eur J Immunol 38:1391–1403

    Article  PubMed  CAS  Google Scholar 

  55. Lin C, Tseng H, Hsieh H, Lee C, Wu C, Cheng C, Yang C (2008) Tumor necrosis factor-alpha induced MMP9 expression via p42/p44 MAPK, JNK, and nuclear factor-kappaB in A549 cells. Toxicol Appl Pharmacol 229:386–398

    Article  PubMed  CAS  Google Scholar 

  56. Ra H, Parks W (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596

    Article  PubMed  CAS  Google Scholar 

  57. Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82:1375–1381

    Article  PubMed  Google Scholar 

  58. Wu B, Crampton S, Hughes C (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26:227–239

    Article  PubMed  CAS  Google Scholar 

  59. Delclaux C, Delacourt C, D’Ortho M, Boyer V, Lafuma C, Harf A (1996) Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol 14:288–295

    PubMed  CAS  Google Scholar 

  60. Bamba S, Andoh A, Yasui H, Araki Y, Bamba T, Fujiyama Y (2003) Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibroblasts: role of interleukin-17. J Gastroenterol 38:548–554

    PubMed  CAS  Google Scholar 

  61. Salmela M, Pender SL, Karjalainen-Lindsberg M, Puolakkainen P, MacDonald T, Saarialho-Kere U (2004) Collagenase-1 (MMP-1), matrilysin-1 (MMP-7), and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing. Scand J Gastroenterol 39:1095–1104

    Article  PubMed  CAS  Google Scholar 

  62. Bullard K, Lund L, NMudgett J, Mellin T, Hunt T, Murphy B, Ronan J, Werb Z, Banda M (1999) Impaired wound contraction in stromelysin-1-deficient mice. Annals of Surgery 230:260–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Al-Dasooqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Dasooqi, N., Gibson, R.J., Bowen, J.M. et al. Matrix metalloproteinases: key regulators in the pathogenesis of chemotherapy-induced mucositis?. Cancer Chemother Pharmacol 64, 1–9 (2009). https://doi.org/10.1007/s00280-009-0984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0984-y

Keywords

Navigation