Skip to main content
Log in

Lyapunov–Krasovskii stable T2FNN controller for a class of nonlinear time-delay systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, a type-2 fuzzy neural network (T2FNN) controller has been designed for a class of nonlinear time-delay systems using the feedback error learning (FEL) approach. In the FEL strategy, the T2FNN controller is in the feedforward path to overcome the nonlinearity and time delay and a classical controller is in the feedback path to guarantee the stability of the controlled system. Using the Lyapunov–Krasovskii stability theorem, the adaptation rules for training of T2FNN controller have been achieved in a way that, in the presence of the unknown disturbance and time-varying delay, the tacking error becomes zero. In the proposed stability criteria and adaptation laws, since just the training error is utilized, i.e., the mathematical model of the system or its parameters is not needed, the overall training and control algorithm is computationally simple. In the present study, the effect of delay has been considered in tuning the T2FNN parameters and, therefore, the performance of the proposed controller has been improved. The proposed strategy has been applied to systems with time-varying input delay and measurement noise and compared with indirect type-1 fuzzy sliding controller. The effectiveness of the proposed controller is shown by some simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abid H, Toumi A (2016) Adaptive fuzzy sliding mode controller for a class of SISO nonlinear time-delay systems. Soft Comput 20:649–659

    Article  MATH  Google Scholar 

  • Abiyev RH, Kaynak O (2010) Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans Ind Electron 57:4147–4159

    Article  Google Scholar 

  • Allouche M, Dahech K, Chaabane M (2017) Multiobjective maximum power tracking control of photovoltaic systems: T-S fuzzy model-based approach. Soft Comput 1–12. https://doi.org/10.1007/s00500-017-2691-7

  • Almaraashi M, John R, Hopgood A, Ahmadi S (2016) Learning of interval and general type-2 fuzzy logic systems using simulated annealing: theory and practice. Inf Sci 360:21–42

    Article  Google Scholar 

  • Almohammadi K, Hagras H, Alghazzawi D, Aldabbagh G (2016) A zSlices-based general type-2 fuzzy logic system for users-centric adaptive learning in large-scale e-learning platforms. Soft Comput 21:6859–6880

    Article  Google Scholar 

  • Amador-Angulo L, Castillo O (2016) A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers. Soft Comput 22:571–594

    Article  Google Scholar 

  • Antão R, Mota A, Martins RE (2016) Model-based control using interval type-2 fuzzy logic systems. Soft Comput 22(2):607–620

  • Arefi MM, Zarei J, Karimi HR (2014) Adaptive output feedback neural network control of uncertain non-affine systems with unknown control direction. J Frankl Inst 351:4302–4316

    Article  MathSciNet  MATH  Google Scholar 

  • Bhatia NP, Szegö GP (1970) Stability theory of dynamical systems. Springer, New York

    Book  MATH  Google Scholar 

  • Biglarbegian M, Melek W, Mendel JM (2011) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans Ind Electr 58:1371–1384

    Article  Google Scholar 

  • Boyd SP, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Castillo O, Melin P, Alanis A, Montiel O, Sepúlveda R (2011) Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput 15:1145–1160

    Article  Google Scholar 

  • Du H, Zhang N (2009) Controller design for time-delay systems using genetic algorithms. Eng Appl Artif Intell 22:397–400

    Article  Google Scholar 

  • Gao Q, Feng G, Xi Z, Wang Y, Qiu J (2014) Robust control of T-S fuzzy time-delay systems via a new sliding-mode control scheme. IEEE Trans Fuzzy Syst 22:459–465

    Article  Google Scholar 

  • Guo L, Gu H, Zhang D (2010) Robust stability criteria for uncertain neutral system with interval time varying discrete delay. Asian J Control 12:739–745

    Article  MathSciNet  Google Scholar 

  • Hale JK, Lunel SMV (2013) Introduction to functional differential equations. Springer, Berlin

    MATH  Google Scholar 

  • Ideta AM (2006) Stability of feedback error learning method with time delay. Neurocomputing 69:1645–1654

    Article  Google Scholar 

  • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185

    Article  MATH  Google Scholar 

  • Khanesar MA, Kaynak O, Yin S, Gao H (2015a) Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay. IEEE Trans Fuzzy Syst 23:205–214

    Article  Google Scholar 

  • Khanesar MA, Kayacan E, Reyhanoglu M, Kaynak O (2015b) Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions. IEEE Trans Cybern 45:858–868

    Article  Google Scholar 

  • Koo GB, Park JB, Joo YH (2014) Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach. IEEE Trans Fuzzy Syst 22:406–419

    Article  Google Scholar 

  • Kumbasar T (2014) A simple design method for interval type-2 fuzzy PID controllers. Soft Comput 18:1293–1304

    Article  Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Lin T-C, Roopaei M (2010) Based on interval type-2 adaptive fuzzy \(\text{ H }\infty \) tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simul 15:4065–4075

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y-J, Tong S (2016) Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64:70–75

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y-J, Tong S, Li D-J, Gao Y (2015) Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Trans Fuzzy Syst 24:1147–1158

    Article  Google Scholar 

  • Maldonado Y, Castillo O, Melin P (2013) Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl Soft Comput 13:496–508

    Article  Google Scholar 

  • Marouf S, Esfanjani RM, Akbari A, Barforooshan M (2016) T-S fuzzy controller design for stabilization of nonlinear networked control systems. Eng Appl Artif Intell 50:135–141

    Article  Google Scholar 

  • Nakanishi J, Schaal S (2004) Feedback error learning and nonlinear adaptive control. Neural Netw 17:1453–1465

    Article  MATH  Google Scholar 

  • Perez J, Valdez F, Castillo O, Melin P, Gonzalez C, Martinez G (2017) Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput 21:667–685

    Article  Google Scholar 

  • Poursamad A, Davaie-Markazi AH (2009) Robust adaptive fuzzy control of unknown chaotic systems. Appl Soft Comput 9:970–976

    Article  Google Scholar 

  • Richard J-P (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica 39:1667–1694

    Article  MathSciNet  MATH  Google Scholar 

  • Ruan X, Ding M, Gong D, Qiao J (2007) On-line adaptive control for inverted pendulum balancing based on feedback-error-learning. Neurocomputing 70:770–776

    Article  Google Scholar 

  • Sabahi K, Ghaemi S, Pezeshki S (2014) Application of type-2 fuzzy logic system for load frequency control using feedback error learning approaches. Appl Soft Comput 21:1–11

    Article  Google Scholar 

  • Saravanakumar R, Ali MS, Hua M (2016) H\(\infty \) state estimation of stochastic neural networks with mixed time-varying delays. Soft Comput 20:3475–3487

    Article  MATH  Google Scholar 

  • Sheng L, Ma X (2014) Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int J Syst Sci 45:977–993

    Article  MathSciNet  MATH  Google Scholar 

  • Singh M, Srivastava S, Hanmandlu M, Gupta J (2009) Type-2 fuzzy wavelet networks (T2FWN) for system identification using fuzzy differential and Lyapunov stability algorithm. Appl Soft Comput 9:977–989

    Article  Google Scholar 

  • Smith OJ (1959) A controller to overcome dead time. ISA J 6:28–33

    Google Scholar 

  • Tsai S-H, Chen Y-A, Lo J-C (2016) A novel stabilization condition for a class of T-S fuzzy time-delay systems. Neurocomputing 175:223–232

    Article  Google Scholar 

  • Yu Z, Li S (2014) Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions. Neurocomputing 129:540–547

    Article  Google Scholar 

  • Zhou Q, Wu C, Jing X, Wang L (2016) Adaptive fuzzy backstepping dynamic surface control for nonlinear Input-delay systems. Neurocomputing 199:58–65

    Article  Google Scholar 

  • Zhu Q, Zhang T, Yang Y (2012) New results on adaptive neural control of a class of nonlinear systems with uncertain input delay. Neurocomputing 83:22–30

    Article  Google Scholar 

  • Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers, trans. ASME, 64

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehraneh Ghaemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Appendix A

Appendix A

The time derivative of the Lyapunov–Krasovskii functional in Eq. (19) is derived as

$$\begin{aligned} \dot{V}(t)= & {} e_{tr} \dot{e}_{tr} +e_{tr} ^{2}- (1-\dot{\tau })e_{tr} (t-\tau )^{2}+\dot{e}_{tr} ^{2}\nonumber \\&- (1-\dot{\tau })\dot{e}_{tr} (t-\tau )^{2}+\tau _{\max } e_{tr} (t)^{2} \nonumber \\&-\int _{t+\theta }^t {e_{tr} (s)^{2}} \hbox {d}s +\frac{\dot{\eta }}{\gamma }(\eta -\eta ^{{*}}) \end{aligned}$$
(A-1)

and by considering the assumptions in Eqs. (2) and (5), we have:

$$\begin{aligned}&\dot{V}(t)\le e_{tr} \dot{e}_{tr} +e_{tr} ^{2}+\dot{e}_{tr} ^{2} +\tau _{\max } e_{tr} ^{2}+\frac{\dot{\eta }}{\gamma }(\eta -\eta ^{{*}}) \nonumber \\&\quad <e_{tr} (\beta -\dot{u}_{ff} )+(1+\tau _{\max } )e_{tr} ^{2}+\dot{e}_{tr} ^{2} +\frac{\dot{\eta }}{\gamma }(\eta -\eta ^{{*}})\nonumber \\ \end{aligned}$$
(A-2)

The Lyapunov–Krasovskii stability requires:

$$\begin{aligned} \dot{V}(t)< & {} e_{tr} (\beta -\dot{u}_{ff} )+(1+\tau _{\max } )e_{tr} ^{2}+\dot{e}_{tr} ^{2} \nonumber \\&+\,\frac{\dot{\eta }}{\gamma }(\eta -\eta ^{{*}})<0 \end{aligned}$$
(A-3)

Substituting the value from Eq. (18) we have:

$$\begin{aligned} \dot{V}(t)< & {} e_{tr} \beta +e_{tr} \left( -\frac{\partial u_{ff} }{\partial m_1 ^{ji}}\dot{m}_1 ^{ji}-\frac{\partial u_{ff} }{\partial \sigma _1 ^{ji}}\dot{\sigma }_1 ^{ji}\right. \nonumber \\&\left. - \frac{\partial u_{ff} }{\partial \sigma _2 ^{ji}}\dot{\sigma }_2 ^{ji}-\frac{\partial u_{ff} }{\partial c^{j}}\dot{c}^{j}-\frac{\partial u_{ff} }{\partial r}\dot{r}\right) \nonumber \\&+ (1+\tau _{\max } )e_{tr} ^{2}+\dot{e}_{tr} ^{2} +\frac{\dot{\eta }}{\gamma }(\eta -\eta ^{{*}}) \end{aligned}$$
(A-4)

Considering Eq. (17), we can get:

$$\begin{aligned} \dot{V}(t)< & {} e_{tr} \beta +\frac{\partial E}{\partial m_1 ^{ji}}\dot{m}_1 ^{ji}+\frac{\partial E}{\partial \sigma _1 ^{ji}}\dot{\sigma }_1 ^{ji}\nonumber \\&+ \frac{\partial E}{\partial \sigma _2 ^{ji}}\dot{\sigma }_2 ^{ji}+\frac{\partial E}{\partial c^{j}}\dot{c}^{j}-e_{tr} \frac{\partial u_{ff} }{\partial r}\dot{r}\nonumber \\&+(1+\tau _{\max } )e_{tr} ^{2}+\dot{e}_{tr} ^{2} +\frac{\dot{\eta }}{\gamma }(\eta -\eta ^{{*}}) \end{aligned}$$
(A-5)

Combining Eqs. (16) and (A-5) gives (with an absolute value of \(e_{tr})\):

$$\begin{aligned} \dot{V}(t)< & {} \left| {e_{tr} } \right| \beta +\frac{\partial E}{\partial m_1 ^{ji}}\left( (\alpha -1)m^{ji}+\eta \frac{\partial E}{\partial m^{ji}}\right) \nonumber \\&+ \frac{\partial E}{\partial \sigma _1 ^{ji}}\quad \left( (\alpha -1)\sigma _1 ^{ji} +\eta \frac{\partial E}{\partial \sigma _1 ^{ji}}\right) \nonumber \\&+\frac{\partial E}{\partial \sigma _2 ^{ji}}\left( (\alpha -1)\sigma _2 ^{ji}+\eta \frac{\partial E}{\partial \sigma _2 ^{ji}}\right) \nonumber \\&+ \frac{\partial E}{\partial c^{j}}\left( (\alpha -1)c^{j} +\eta \frac{\partial E}{\partial c^{j}}\right) -e_{tr} \frac{\partial u_{ff} }{\partial r}\dot{r} \nonumber \\&+ \,(1+\tau _{\max } )e_{tr} ^{2}+\dot{e}_{tr} ^{2} +\frac{\dot{\eta }}{\gamma }(\eta -\eta ^{{*}}) \end{aligned}$$
(A-6)

It is considered that \(\eta ^{{*}}\) is large as

$$\begin{aligned} \eta ^{{*}}>\beta \end{aligned}$$
(A-7)

By substituting the adaptation law for \(\eta \) in Eq. (20) into Eq. (A-6) and rearranging that for satisfying the mentioned stability condition, we have:

$$\begin{aligned}&\dot{V}(t)<-(\overbrace{-\eta \left( \frac{\partial E}{\partial \sigma _1 ^{ji}}\right) ^{2}+(1-\alpha )\sigma _1 ^{ji}\frac{\partial E}{\partial \sigma _1 ^{ji}}-0.5\eta \left| {e_{tr} } \right| }^I) \nonumber \\&\quad -(\overbrace{-\eta \left( \frac{\partial E}{\partial \sigma _2 ^{ji}}\right) ^{2}+(1-\alpha )\sigma _2 ^{ji}\frac{\partial E}{\partial \sigma _2 ^{ji}}-0.5\eta \left| {e_{tr} } \right| }^{II}) \nonumber \\&\quad -(\overbrace{-\eta \left( \frac{\partial E}{\partial m^{ji}}\right) ^{2}+(1-\alpha )m^{ji}\frac{\partial E}{\partial m^{ji}}-\dot{e}_{tr} ^{2}}^{III} ) \nonumber \\&\quad -(\overbrace{-\eta \left( \frac{\partial E}{\partial c^{j}}\right) ^{2}+(1-\alpha )c^{j}\frac{\partial E}{\partial c^{j}}-(1+\tau _{\max } )e_{tr} ^{2}+e_{tr} \frac{\partial u_{ff} }{\partial r}\dot{r}}^{IV})\nonumber \\ \end{aligned}$$
(A-8)

Equation (A-8) is in the form of four quadratic equations. This equation satisfies the Lyapunov–Krasovskii stability criterion only when:

$$\begin{aligned} \dot{V}(t)< & {} -\left( \overbrace{\frac{\partial E}{\partial \sigma _1 ^{ji}}+A}^I\right) ^{2}-\left( \overbrace{\frac{\partial E}{\partial \sigma _2 ^{ji}}+B}^{II}\right) ^{2} \nonumber \\&-\left( \overbrace{\frac{\partial E}{\partial m^{ji}}+C}^{III} \right) ^{2} -\left( \overbrace{\frac{\partial E}{\partial c^{j}}+D}^{IV}\right) ^{2}<0 \end{aligned}$$
(A-9)

where A, B, C, and D are the solutions of the equations. It should be noted that if \(b^{2}-4ac=0\) exists in Eq. (A-9), then A, B, C, and D are solved. (a, b, and c are the coefficients of the standard quadratic equation.) Therefore, \(b^{2}-4ac=0\) is calculated for the equations as follows:

$$\begin{aligned}&((1-\alpha )\sigma _1 ^{ji})^{2}-4(-0.5\eta \left| {e_{tr} } \right| )(-\eta )=0 \end{aligned}$$
(A-10)
$$\begin{aligned}&((1-\alpha )\sigma _2 ^{ji})^{2}-4(-0.5\eta \left| {e_{tr} } \right| )(-\eta )=0 \end{aligned}$$
(A-11)
$$\begin{aligned}&((1-\alpha )m^{ji})^{2}-4(-\dot{e}_{tr} ^{2})(-\eta )=0 \end{aligned}$$
(A-12)
$$\begin{aligned}&((1-\alpha )c^{j})^{2}-4(-(1+\tau _{\max } )e_{tr} ^{2}+e_{tr} \frac{\partial u_{ff} }{\partial r}\dot{r})(-\eta )=0\nonumber \\ \end{aligned}$$
(A-13)

Each of Eqs. (A-10)–(A-13) has two solutions (related to the T2FNN parameters). We suppose that \(\sigma _{1,1}\) and \({\sigma }_{1,2}\) are the solutions of \(\sigma _{1}\), \({\sigma }_{2,1}\) and \({\sigma }_{2,2}\) are the solutions of \(\sigma _{2}\), \(m_{1}\) and \(m_{2}\) are the solutions of m, and \(c_{1}\) and \(c_{2}\) are the solutions of c. All of the solutions satisfy Eq. (A-9) giving:

$$\begin{aligned} A_1= & {} \frac{(1-\alpha )\sigma _{1,1} }{2\eta } ,\quad A_2 =\frac{(1-\alpha )\sigma _{1,2} }{2\eta } \end{aligned}$$
(A-14)
$$\begin{aligned} B_1= & {} \frac{(1-\alpha )\sigma _{2,1} }{2\eta } ,\quad B_2 =\frac{(1-\alpha )\sigma _{2,2} }{2\eta } \end{aligned}$$
(A-15)
$$\begin{aligned} C_1= & {} \frac{(1-\alpha )m_1 }{2\eta } ,\quad C_2 =\frac{(1-\alpha )m_2 }{2\eta } \end{aligned}$$
(A-16)
$$\begin{aligned} D_1= & {} \frac{(1-\alpha )c_1 }{2\eta } ,\quad D_2 =\frac{(1-\alpha )c_2 }{2\eta } \end{aligned}$$
(A-17)

Choosing the values stated in Eqs. (21)–(24) makes \(\dot{V}(t)\) more negative, and it can be concluded that \(\dot{V}(t)<0\) and, therefore, the designed control system is Lyapunov–Krasovskii stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaemi, S., Sabahi, K. & Badamchizadeh, M.A. Lyapunov–Krasovskii stable T2FNN controller for a class of nonlinear time-delay systems. Soft Comput 23, 1407–1419 (2019). https://doi.org/10.1007/s00500-018-3053-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3053-9

Keywords

Navigation