Skip to main content
Log in

A new branch-and-bound approach to semi-supervised support vector machine

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper develops a branch-and-bound algorithm to solve the 2-norm soft margin semi-supervised support vector machine. First, the original problem is reformulated as a non-convex quadratically constrained quadratic programming problem with a simple structure. Then, we propose a new lower bound estimator which is conceptually simple and easy to be implemented in the branch-and-bound scheme. Since this estimator preserves both a high efficiency and a relatively good quality in the convex relaxation, it leads to a high total efficiency in the whole computational process. The numerical tests on both artificial and real-world data sets demonstrate the better effectiveness and efficiency of this proposed approach, which is compared to other well-known methods on different semi-supervised support vector machine models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adankon M, Cheriet M, Biem A (2009) Semisupervised least squares support vector machine. IEEE Trans Neural Netw 20(12):1858–1870

    Article  Google Scholar 

  • Bache K, Lichman M (2013) UCI machine learning repository. School of Information and Computer Science, University of California. http://archive.ics.uci.edu/ml. Accessed 2 Aug 2015

  • Bai Y, Yan X (2015) Conic relaxation for semi-supervised support vector machines. J Optim Theory Appl. doi:10.1007/s10957-015-0843-4

  • Bai Y, Chen Y, Niu B (2012) SDP relaxation for semi-supervised support vector machine. Pac J Optim 8(1):3–14

    MATH  MathSciNet  Google Scholar 

  • Bai Y, Niu B, Chen Y (2013) New SDP models for protein homology detection with semi-supervised SVM. Optimization 62(4):561–572

    Article  MATH  MathSciNet  Google Scholar 

  • Bennett K, Demiriz A (1999) Semi-supervised support vector machines. Adv Neural Inf Process Syst 11:368–374

    Google Scholar 

  • Billionnet A, Elloumi S (2007) Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math Program 109:55–68

    Article  MATH  MathSciNet  Google Scholar 

  • Blum A, Chawla S (2001) Learning from labeled and unlabeled data using graph mincuts. In: Proc. 18th int. conf. on mach. learn

  • Chapelle O, Schölkopf B, Zien A (2006) Semi-supervised learning. MIT press, Cambridge

    Book  Google Scholar 

  • Chapelle O, Sindhwani V, Keerthi S (2008) Optimization techniques for semi-supervised support vector machines. J Mach Learn Res 9:203–233

    MATH  Google Scholar 

  • Collobert R, Sinz F, Weston F, Bottou L (2006) Large scale transductive SVMs. J Math Learn Res 7:1687–1712

    MATH  MathSciNet  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • de Bie T, Cristianini N (2004) Convex methods for transuction. In: Thrun S, Saul L, Schöikopf B (eds) Advances in neural information processing systems, vol 16. MIT Press, Cambridge

    Google Scholar 

  • de Bie T, Crisianini N (2006) Semi-supervised learning using semi-definite programming. In: Chapelle O, Schöikopf B, Zien A (eds) Semi-supervised learning. MIT Press, Cambridge

  • Gieseke F, Airola A, Pahikkala T, Kramer O (2014) Fast and simple gradient-based optimization for semi-supervised support vector machines. Neurocomputing 123:23–32

    Article  Google Scholar 

  • Grant M, Boyd S (2010) CVX: matlab software for disciplined programming, version 1.2. http://cvx.com/cvx. Accessed 15 Aug 2015

  • Ha M, Wang C, Chen J (2013a) The support vector machine based on intuitionistic fuzzy number and kernel function. Soft Comput 4:635–641

  • Ha M, Yang Y, Wang C (2013b) A new support vector machine based on type-2 fuzzy samples. Soft Comput 11:2065–2074

  • He Q, Wu C (2011) Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets. Soft Comput 15:1105–1114

    Article  Google Scholar 

  • Horn R (1990) The hadamard product. Proc Symp Appl Math Am Math Soc 40:87C169

    Google Scholar 

  • Joachims T (1999) Transductive inference for text classification using support vector machines. In: Int. conf. mach. learn., pp 200–209

  • Lanckriet G, Cristianini N, Bartlett P, Ghaoui L, Jordan M (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5:27–72

    MATH  MathSciNet  Google Scholar 

  • Lee C, Wang S, Jiao F, Schuurmans D, Greiner R (2006) Learning to model spatial dependency: semi-supervised discriminative random fields. In: Adv Neural Info Process Sys, vol 19

  • Lu C, Guo X (2014) Convex reformulation for binary quadratic programming problems via average objective value maximization. Optim Lett. http://link.springer.com/article/10.1007/s11590-014-0768-0. Accessed 12 July 2015

  • Luo J, Fang S, Bai Y, Deng Z (2016) Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. J Ind Manag Optim 12:357–373

    Article  MATH  MathSciNet  Google Scholar 

  • Osuna F, Freund R, Girosit F (1997) Training support vector machines: an application to face detection. In: Proc. comput. vis. pattern recognit., pp 130–136

  • Pardalos P, Vavasis S (1991) Quadratic programming with one negative eigenvalue is NP-Hard. J Glob Optim 1:15–22

    Article  MATH  MathSciNet  Google Scholar 

  • Reddy S, Schevade S, Murty M (2011) A fast quasi-Newton method for semi-supervised SVM. Pattern Recognit 44:2305–2313

    Article  MATH  Google Scholar 

  • Schölkopf B, Smola A (2002) Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press, Cambridge

    Google Scholar 

  • Sindhwani V, Keerthi S, Chapelle O (2006) Deterministic anealing for semi-supervised kernel machines. In: Proc. int. conf. mach. learn., pp 841–848

  • Sturm J (1999) SeDuMi 1.02, a matlab tool box for optimization over symmetric cones. Optim Methods Softw 11&12:625–653

  • Tay F, Cao I (2001) Application of support vector machines in financial time series forecasting. Omega 29(4):309–317

    Article  Google Scholar 

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38:49–95

    Article  MATH  MathSciNet  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley-interscience, New York

  • Xu L, Neufeld J, Larson B, Schuurmans D (2005) Maximum margin clustering. In: Saul L, Weiss Y, Bottou L (eds) Adv. neural info. process syst. MIT Press, Cambridge, pp 1537–1544

  • Xu L, Jin R, Zhu K, King I, Lyu M (2008) Efficient convex relaxation for transductive support vector machine. In: Adv. neural info. process syst., vol 20. MIT Press, Cambridge, pp 1641–1648

  • Yang X, Han L, Yan L, He L (2014) A bilateral-truncated-loss based robust support vector machine for classification problems. Soft Comput. doi:10.1007/s00500-014-1448-9

  • Zhao B, Wang F, Zhang C (2008) Cuts3vm: a fast semi-supervised svm algorithm. In: Proc. 14th ACM SIGKDD int. conf. knowl. discov. data min., pp 830–838

  • Zhu X, Goldberg A (2009) Introduction to semi-supervised learning. Morgan and Claypool, New York

    MATH  Google Scholar 

Download references

Acknowledgments

Tian’s research has been supported by the National Natural Science Foundation of China Grants \(\#\) 11401485 and \(\#\) 71331004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Luo, J. A new branch-and-bound approach to semi-supervised support vector machine. Soft Comput 21, 245–254 (2017). https://doi.org/10.1007/s00500-016-2089-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2089-y

Keywords

Navigation