Skip to main content
Log in

A new formulation for second-order cone programming support vector machine

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

A new second-order cone programming (SOCP) formulation inspired by the soft-margin linear programming support vector machine (LP-SVM) formulation and cost-sensitive framework is proposed. Our proposed method maximizes the slack variables related to each class by appropriately relaxing the bounds on the VC dimension using the l\(_{\infty }\)-norm, and penalizes them using the corresponding regularization parametrization to control the trade-off between margin and slack variables. The proposed method has two main advantages: firstly, a flexible classifier is constructed that extends the advantages of the soft-margin LP-SVM problem to the second-order cone; secondly, due to the elimination of a conic restriction, only two SOCP problems containing second-order cone constraints need to be solved. Thus similar results to the SOCP-SVM problem are obtained with less calculational effort. Numerical experiments show that our method achieves the better classification performance than the conventional SOCP-SVM formulations and standard linear SVM formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions. This article is completed independently under the supervision and guidance of the corresponding author.

References

  1. Vapnik VN (1999) An overview of statistical learning theory. IEEE Transact Neu Net 10(5):988–999. https://doi.org/10.1109/72.788640

    Article  CAS  Google Scholar 

  2. Chu Maoxiang, Liu Xiaoping, Gong Rongfen, Zhao Jie (2018) Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere. J Iron Steel Res Int 25:706–716. https://doi.org/10.23919/ChiCC.2018.8483656

    Article  Google Scholar 

  3. Song Qiang, Wang Aimin (2009) Simulation and prediction of alkalinity in sintering process based on grey least squares support vector machine. J Iron Steel Res Int 16(5):1–6. https://doi.org/10.1016/S1006-706X(10)60001-5

    Article  Google Scholar 

  4. Wang Qing, Qian Weiqi, He Kaifeng (2015) Unsteady aerodynamic modeling at high angles of attack using support vector machines. Chin J Aeronaut 28(3):659–668. https://doi.org/10.1016/j.cja.2015.03.010

    Article  Google Scholar 

  5. Li Yonghua, Li Jinying, Qin Qiang (2016) Gearbox device failure mode criticality analysis based on support vector machine. J Shang Jiaot Univ(Science) 21(5):611–614. https://doi.org/10.1007/s12204-016-1771-7

    Article  Google Scholar 

  6. Yongkui SUN, Yuan CAO, Guo XIE, Tao WEN (2020) Condition monitoring for railway point machines based on sound analysis and support vector machine. Chin J Electron 29(4):786–792. https://doi.org/10.1049/cje.2020.06.007

    Article  Google Scholar 

  7. Yang X, Huang J, Wu Y, Wang J, Wang P, Wang X, Huete AR (2011) Estimating biophysical parameters of rice with remote sensing data using support vector machines. Sci China Life Sci. https://doi.org/10.1007/s11427-011-4135-4

    Article  PubMed  Google Scholar 

  8. Gu YH, Zhao NJ, Ma MJ, Meng DS, Yu Y, Jia Y, Fang L, Liu JG, Liu WQ (2016) Monitoring the heavy element of cr in agricultural soils using a mobile laser-induced breakdown spectroscopy system with support vector machine. Chin Phys Lett 33(8):085201. https://doi.org/10.1088/0256-307X/33/8/085201

    Article  Google Scholar 

  9. Shahbakhi Mohammad (2014) Danial Taheri Far, Ehsan Tahami : Speech analysis for diagnosis of parkinson’s disease using genetic algorithm and support vector machine. J Biomed Sci Eng 7(4):147–156. https://doi.org/10.4236/jbise.2014.74019

    Article  Google Scholar 

  10. Shi Xiaobo, Xiuzhen Hu (2013) Using the Support Vector Machine Algorithm to Predict \(\beta\)-Turn Types in Proteins. Engineering 5(10):386–390. https://doi.org/10.4236/eng.2013.510B078

    Article  Google Scholar 

  11. Vapnik VN, Chervonenkis A Ya (2015) On the uniform convergence of relative frequencies of events to their probabilities. In: Measures of Complexity: Festschrift for Alexey Chervonenkis, Cham: Springer International Publishing, pp. 11–30 . https://doi.org/10.1007/978-3-319-21852-6_3

  12. Maldonado Sebastián, Weber Richard (2009) A wrapper method for feature selection using support vector machines. Inf Sci 179(13):2208–2217. https://doi.org/10.1016/j.ins.2009.02.014

    Article  Google Scholar 

  13. Meyer David, Leisch Friedrich, Hornik Kurt (2003) The support vector machine under test. Neurocomputing 55(1–2):169–186. https://doi.org/10.1016/S0925-2312(03)00431-4

    Article  Google Scholar 

  14. Jayadeva Khemchandani R, Suresh Chandra (2007) Twin support vector machines for pattern classification. IEEE Transact Pattern Anal Mach Intell 29(5):905–910. https://doi.org/10.1109/TPAMI.2007.1068

    Article  Google Scholar 

  15. Tanveer M (2015) Application of smoothing techniques for linear programming twin support vector machines. Knowl Inf Syst 45(1):191–214. https://doi.org/10.1007/s10115-014-0786-3

    Article  Google Scholar 

  16. Tanveer M (2015) Robust and sparse linear programming twin support vector machines. Cognit Comput 7(1):137–149. https://doi.org/10.1007/s12559-014-9278-8

    Article  Google Scholar 

  17. Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Transact Neu Netw 22(6):962–968. https://doi.org/10.1109/TNN.2011.2130540

    Article  Google Scholar 

  18. Maldonado S, López J, Carrasco M (2016) A second-order cone programming formulation for twin support vector machines. Appl Intell 45:265–276. https://doi.org/10.1007/s10489-016-0764-4

    Article  Google Scholar 

  19. Lanckriet GR, Ghaoui LE, Bhattacharyya C, Jordan MI (2002) A robust minimax approach to classification. J Mach Learn Res 3:555–582

    MathSciNet  Google Scholar 

  20. Wang Ximing, Fan Neng, Pardalos Panos M (2018) Robust chance-constrained support vector machines with second-order moment information. Annal Operat Res 263:45–68. https://doi.org/10.1007/s10479-015-2039-6

    Article  MathSciNet  Google Scholar 

  21. Nath JS, Bhattacharyya C (2007) Maximum margin classifiers with specified false positive and false negative error rates. In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), Society for Industrial and Applied Mathematics, 10.1137/1.9781611972771.4

  22. Maldonado Sebastián, López Julio (2014) Imbalanced data classification using second-order cone programming support vector machines. Patt Recognit 47(5):2070–2079. https://doi.org/10.1016/j.patcog.2013.11.021

    Article  Google Scholar 

  23. Maldonado Sebastián, López Julio (2014) Alternative second-order cone programming formulations for support vector classification. Inf Sci 268:328–341. https://doi.org/10.1016/j.ins.2014.01.0412

    Article  MathSciNet  Google Scholar 

  24. López Julio, Maldonado Sebastián (2016) Multi-class second-order cone programming support vector machines. Inf Sci 330:328–341. https://doi.org/10.1016/j.ins.2015.10.016

    Article  Google Scholar 

  25. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimizat Methods Soft 11(1–4):625–653. https://doi.org/10.1080/10556789908805766

    Article  MathSciNet  Google Scholar 

  26. Alvarez Felipe, Julio López C, Ramírez Héctor (2010) Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and support vector machines. Optimizat Methods Softw 25(6):859–881. https://doi.org/10.1080/10556780903483356

    Article  MathSciNet  Google Scholar 

  27. Alizadeh F, Goldfarb D (2003) Second-order cone programming. Mathemat Program 95:3–51. https://doi.org/10.1007/s10107-002-0339-5

    Article  MathSciNet  Google Scholar 

  28. Cortes Corinna, Vapnik Vladimir (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  29. Zhou Weida, Zhang Li, Jiao Licheng (2002) Linear programming support vector machines. Patt Recognit 35(12):2927–2936. https://doi.org/10.1016/S0031-3203(01)00210-2

    Article  Google Scholar 

  30. Christopher JC (1998) Burges: A tutorial on support vector machines for pattern recognition. Data Mining Knowl Disc 2(2):121–167. https://doi.org/10.1023/A:1009715923555

    Article  MathSciNet  Google Scholar 

  31. Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, pp. 185–208

  32. Mangasarian OL (2002) A finite newton method for classification. Optimizat Methods Soft 17(5):913–929. https://doi.org/10.1080/1055678021000028375

    Article  MathSciNet  Google Scholar 

  33. Peng Xinjun (2011) Building sparse twin support vector machine classifiers in primal space. Inf Sci 181(18):3967–3980. https://doi.org/10.1016/j.ins.2011.05.004

    Article  Google Scholar 

  34. Bennett KP, Bredensteiner EJ (2000) Duality and geometry in svm classifiers. In: International Conference on Machine Learning, pp. 57–64

  35. Francis R (2006) Bach, David Heckerman, Eric Horvitz: Considering cost asymmetry in learning classifiers. J Mach Learn Res 7(63):1713–1741

    MathSciNet  Google Scholar 

  36. Zhou ZH. Machine Learning. Tsinghua university, Beijing

  37. Lewis DD (1995) A sequential algorithm for training text classifiers: Corrigendum and additional data. Acm Sigir Forum 29:13–29. https://doi.org/10.1145/219587.219592

    Article  Google Scholar 

  38. Kubat M, Holte RC, Matwin S (1998) Machine learning for the detection of oil spills in satellite radar images. Mach Learn 30:195–215

    Article  Google Scholar 

  39. Bache K, Lichman M (2013) UCI Machine Learning Repository

  40. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Transact Intell Syst Technol (TIST) 2(3):1–27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  41. Geng X, Zhan DC, Zhou ZH (2005) Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transact Syst Man Cybernet Part B (Cybernetics) 35(6):1098–1107. https://doi.org/10.1109/TSMCB.2005.850151

    Article  Google Scholar 

  42. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: A library for large linear classification. J Mach Learn Res 9:1871–1874

    Google Scholar 

  43. Tamasyan GS, Chumakov AA (2014) Finding the distance between ellipsoids. J Appl Ind Mathem 8:400–410. https://doi.org/10.1134/S1990478914030132

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding has been received to assist in the preparation of this manuscript. No financial or proprietary interest in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zemin Zong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A dual problem for LP-SVM

Appendix A dual problem for LP-SVM

We use \(m_1\) and \(m_2\) to indicate the number of samples for positive and negative classes, respectively, the data matrix \(A \in {\Re ^{n \times {m_1}}}\) for positive classes, and the data matrix \(B \in {\Re ^{n \times {m_2}}}\) for negative classes, \(\mathbf{{e}} = (1,...,1)\) as a ones vector of appropriate dimensionality. The vector in \({\Re ^{{m_1}}}\) we denote by subscript 1, the vector in \({\Re ^{{m_2}}}\) we denote by subscript 2, the subscriptless in \({\Re ^{{n}}}\). Based on this, the Lagrange formulation for Eq. (4) is:

$$\begin{aligned} \begin{aligned} L(\mathbf{{w}},b,r,{\mathbf{{z}}_1},{\mathbf{{z}}_2},t,\mathbf{{\alpha }},\mathbf{{\beta }}) = - r - \left\langle {{A^{\textrm{T}}}{} \mathbf{{w}} + (b - r)\mathbf{{e}},{\mathbf{{z}}_1}} \right\rangle \\ - \left\langle { - {B^{\textrm{T}}}{} \mathbf{{w}} - (b + r)\mathbf{{e}},{\mathbf{{z}}_2}} \right\rangle \\ - rt - \left\langle {\mathbf{{e}} - \mathbf{{w}},\mathbf{{\alpha }}} \right\rangle - \left\langle {\mathbf{{e}} + \mathbf{{w}},\mathbf{{\beta }}} \right\rangle . \end{aligned} \end{aligned}$$

Then the dual equation for problem (4) is:

$$\begin{aligned} \begin{aligned} \max \;\;\;&L(\mathbf{{w}},b,r,{\mathbf{{z}}_1},{\mathbf{{z}}_2},t,\mathbf{{\alpha }},\mathbf{{\beta }})\\ s.t.\;\;\;&\frac{{\partial L}}{{\partial \mathbf{{w}}}} = - A{\mathbf{{z}}_1} + B{\mathbf{{z}}_2} + \mathbf{{\alpha }} - \mathbf{{\beta }} = 0,\\&\frac{{\partial L}}{{\partial b}} = - {\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_1} + {\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_2} = 0,\\&\frac{{\partial L}}{{\partial r}} = - 1 + {\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_1} + {\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_2} - t = 0,\\&{\mathbf{{z}}_1} \ge 0,{\mathbf{{z}}_2} \ge 0,t \ge 0,\mathbf{{\alpha }} \ge 0,\mathbf{{\beta }} \ge 0. \end{aligned} \end{aligned}$$

Bringing the above equation into the Lagrange formulation, we can get:

$$\begin{aligned} \begin{aligned} \mathop {\max }\limits _{\mathbf{{\alpha }},\mathbf{{\beta }},{\mathbf{{z}}_1},{\mathbf{{z}}_2}} \;\;\;&-{\mathbf{{e}}^{\textrm{T}}}(\mathbf{{\alpha }} + \mathbf{{\beta }})\\ s.t.\;\;\;\;\;&\mathbf{{\alpha }} - \mathbf{{\beta }} = A{\mathbf{{z}}_1} - B{\mathbf{{z}}_2},\\&{\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_1} = 1,{\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_2} = 1,\\&{\mathbf{{z}}_1} \ge 0,{\mathbf{{z}}_2} \ge 0,\mathbf{{\alpha }} \ge 0,\mathbf{{\beta }} \ge 0. \end{aligned} \end{aligned}$$

Due to the following relation \(\mathbf{{z}} = \mathbf{{\alpha }} - \mathbf{{\beta }},{\left\| \mathbf{{z}} \right\| _1} = {\mathbf{{e}}^{\textrm{T}}}(\mathbf{{\alpha }} + \mathbf{{\beta }}),\mathbf{{\alpha }},\mathbf{{\beta }} \ge 0.\), we can obtain the final result:

$$\begin{aligned} \begin{aligned} \mathop {\max }\limits _{{\mathbf{{z}}_1},{\mathbf{{z}}_2}} \;\;\;&- {\left\| {A{\mathbf{{z}}_1} - B{\mathbf{{z}}_2}} \right\| _1}\\ s.t.\;\;\;&{\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_1} = 1,\;\;{\mathbf{{e}}^{\textrm{T}}}{\mathbf{{z}}_2} = 1,\\&{\mathbf{{z}}_1} \ge 0,\;\;{\mathbf{{z}}_2} \ge 0. \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Z., Mu, X. A new formulation for second-order cone programming support vector machine. Int. J. Mach. Learn. & Cyber. 15, 1101–1111 (2024). https://doi.org/10.1007/s13042-023-01958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01958-8

Keywords

Navigation