Skip to main content
Log in

Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Key message

bZIP TF network in pollen.

Abstract

Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs—AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/– pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W (2009) A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell 21:1747–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amoutzias GD, Veron AS, Weiner J 3rd, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, Robertson DL (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol 24:827–835

    Article  CAS  PubMed  Google Scholar 

  • Amoutzias GD, Robertson DL, Van de Peer Y, Oliver SG (2008) Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem Sci 33:220–229

    Article  CAS  PubMed  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  Google Scholar 

  • Bedinger P (1992) Remarkable biology of pollen. Plant Cell 4:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokvaj P, Hafidh S, Honys D (2015) Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom Data 3:106–111

    Article  PubMed  Google Scholar 

  • Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D (2011) The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23(2):534–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M, Kumar S, Sari U, Esparza-Franco MA, Sakamoto W, Rozwadowski K, Higashiyama T, Twell D (2014) An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26:2098–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:2544–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet. doi:10.1371/journal.pgen.1000430

    Google Scholar 

  • Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–438

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Benth AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, Colombo L (2008) AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Corrêa LGG, Riaño-Pachón DM, Schrago CG, Vicentini dos Santos R, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS ONE 3:e2944. doi:10.1371/journal.pone.0002944

    Article  PubMed  PubMed Central  Google Scholar 

  • Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153(4):1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19:591–599

    Article  CAS  PubMed  Google Scholar 

  • Deppmann CD, Acharya A, Rishi V, Wobbes B, Smeekens S, Taparowsky EJ, Vinson C (2004) Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. Nucl Acids Res 32:3435–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic leucine zipper factor interactions: insight into the evolution of closed interaction networks. Mol Biol Evol 23:1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Dietrich K, Weltmeier F, Ehlert A, Weiste C, Stahl M, Harter K, Dröge-Laser W (2011) Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. Plant Cell 23:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupl’áková N, Reňák D, Hovanec P, Honysová B, Twell D, Honys D (2007) Arabidopsis Gene Family Profiler (aGFP): user-oriented transcriptomic database with easy-to-use graphic interface. BMC Plant Biol 7:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Dröge-Laser W (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbiati F, Sinha Roy D, Simonini S, Cucinotta M, Ceccato L, Cuesta C, Simaskova M, Benkova E, Kamiuchi Y, Aida M, Weijers D, Simon R, Masiero S, Colombo L (2013) An integrative model of the control of ovule primordia formation. Plant J 76:446–455

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Brandizzi F, Benning C, Larkin RM (2008) A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:16398–16403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibalová A, Reňák D, Matczuk K, Dupl’áková N, Cháb D, Twell D, Honys D (2009) AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol Biol 70:581–601

    Article  PubMed  Google Scholar 

  • Hafidh S, Breznenová K, Růžička P, Feciková J, Čapková V, Honys D (2012a) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12:24. doi:10.1186/1471-2229-12-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafidh S, Breznenová K, Honys D (2012b) b. De novo post-pollen mitosis II tobacco pollen tube transcriptome. Plant Signal Behav 7:918–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafidh S, Fila J, Honys D (2016) Male gametophyte development and function in angiosperms: a general concept. Plant Reprod 29(1):31–51

    Article  PubMed  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:85R

    Article  Google Scholar 

  • Hurst HC (1994) Transcription factors. 1: bZIP proteins. Protein Profile 1:123–168

    CAS  PubMed  Google Scholar 

  • Iven T, Strathmann A, Böttner S, Zwafink T, Heinekamp T, Guivarc’h A, Roitsch T, Dröge-Laser W (2010) Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant J 63:155–166

    CAS  PubMed  Google Scholar 

  • Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata Y, Fedoroff NV, Koizumi N (2008) Arabidopsis bZIP 60 is a proteolysis activated transcription factor involved in endoplasmic reticulum stress response. Plant Cell 20:3107–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP Research Group (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152:1109–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminaka H, Näke C, Epple P, Dittgen J, Schütze K, Chaban C, Holt BF 3rd, Merkle T, Schäfer E, Harter K, Dangl JL (2006) bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 20:4400–4411

    Article  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Prot 1(3):1278–1286

    Article  Google Scholar 

  • Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada JP, Grossniklaus U, Twell D (2004) Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics 167:1975–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KA (1992) Dimeric transcription factor families: it takes two to tango but who decides on partners and the venue? J Cell Sci 103:9–14

    CAS  PubMed  Google Scholar 

  • Lehner A, Dardelle F, Soret-Morvan O, Lerouge P, Driouich A, Mollet JC (2010) Pectins in the cell wall of Arabidopsis thaliana pollen tube and pistil. Plant Signal Behav 5(10):1282–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Jain MR, Chen C, Yue X, Hebbar V, Zhou R, Kong AN (2005) Nrf2 possesses a redox—insensitive nuclear export signal overlapping with the leucin zipper motif. J Biol Chem 280:28430–28438

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19:4111–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorca CM, Potschin M, Zentgraf U (2014) bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci 5:169. doi:10.3389/fpls.2014.00169

    Article  PubMed  PubMed Central  Google Scholar 

  • Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Sotomayor P, Chávez Montes RA, Silvestre-Vañó M, Herrera-Ubaldo H, Greco R, Pablo-Villa J, Galliani BM, Diaz-Ramirez D, Weemen M, Boutilier K, Pereira A, Colombo L, Madueño F, Marsch-Martínez N, de Folter S (2016) Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana. Plant J. doi:10.1111/tpj.13264

    PubMed  Google Scholar 

  • Naar AM, Lemon BD, Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  CAS  PubMed  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136. doi:10.1111/j.1365-313X.2007.03212.x

    Article  CAS  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2016) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. doi:10.1016/j.tplants.2016.08.015

    PubMed  Google Scholar 

  • Oliveros JC (2009) CEL Normalizer. An interactive server for normalizing standard Affymetrix CEL files. http://bioinfogp.cnb.csic.es/tools/normalize_cel

  • Park SK, Howden R, Twell D (1998) Arabidopsis thaliana gametophytic mutation Gemini pollen 1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799

    CAS  PubMed  Google Scholar 

  • Pawar V, Poulet A, Detourne G, Tatout C, Vanrobays E, Evans DE, Graumann K (2016) A novel family of plant nuclear envelope-associated proteins. J Exp Bot. doi:10.1093/jxb/erw332

    PubMed  Google Scholar 

  • Pyo H, Demura T, Fukuda H (2006) Vascular cell expression patterns of Arabidopsis bZIP group I genes. Plant Biotechnol 23:497–501

    Article  CAS  Google Scholar 

  • Reňák D, Dupl’áková N, Honys D (2012) Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. Sex Plant Rep 25:39–60

    Article  Google Scholar 

  • Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28(2):73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schütze K, Harter K, Chaban C (2008) Post-translational regulation of plant bZIP factors. Trends Plant Sci 13:247–255. doi:10.1016/j.tplants.2008.03.002

    Article  PubMed  Google Scholar 

  • Shen H, Cao K, Wang X (2007) A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer. Biochem Biophys Res Commun 362:425–430

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Cao K, Wang X (2008) AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana. BMB Rep 41:132–138

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Ram H, Abbas N, Chattopadhyay S (2012) Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana. J Biol Chem 287:25995–26009. doi:10.1074/jbc.M111.333906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2010) G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strathmann A, Kuhlmann M, Heinekamp T, Dröge-Laser W (2001) BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J 28:397–408

    Article  CAS  PubMed  Google Scholar 

  • Talanian RV, McKnight CJ, Kim PS (1990) Sequence-specific DNA binding by a short peptide dimer. Science 249:761–769

    Article  Google Scholar 

  • Tsugama D, Liu S, Takano T (2012) AbZIP protein, VIP1 is regulator of osmosensory signalingin Arabidopsis. Plant Physiol 159:144–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verelst W, Twell D, de Folter S, Immink R, Saedler H, Münster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 11:R249

    Article  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K, Alonso R, Harter K, Vicente-Carbajosa J, Dröge-Laser W (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 25:3133–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Dröge-Laser W (2009) Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol 69:107–119

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Guo R, Guo C, Hou H, Wang X, Gao H (2016) Evolutionary and expression analyses of the Apple Basic Leucine Zipper transcription factor family. Front Plant Sci 7:376

    PubMed  PubMed Central  Google Scholar 

  • Zhou D, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research 38:W64–W70 (Web Server issue)

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Czech Scientific Foundation (Grants Nos. 15-22720S, 14-32292S, and 13-41444P) and Ministry of Education, Youth and Sports of the Czech Republic (Grant No. LD14109). We thank Dr. Simona Masiero, Dip. Di Biologia, Universita degli Studi di Milano, Milano, Italy, for supervising the Y2H experiments and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Honys.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by David Twell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibalová, A., Steinbachová, L., Hafidh, S. et al. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reprod 30, 1–17 (2017). https://doi.org/10.1007/s00497-016-0295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-016-0295-5

Keywords

Navigation