Skip to main content
Log in

The evolution of self-fertility in apomictic plants

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Self-fertilization and apomixis have often been seen as alternative evolutionary strategies of flowering plants that are advantageous for colonization scenarios and in bottleneck situations. Both traits have multiple origins, but different genetic control mechanisms; possible connections between the two phenomena have long been overlooked. Most apomictic plants, however, need a fertilization of polar nuclei for normal seed development (pseudogamy). If self-pollen is used for this purpose, self-compatibility is a requirement for successful pollen tube growth. Apomictic lineages usually evolve from sexual self-incompatible outcrossing plants, but pseudogamous apomicts frequently show a breakdown of self-incompatibility. Two possible pathways may explain the evolution of SC: (1) Polyploidy not only may trigger gametophytic apomixis, but also may result in a partial breakdown of SI systems. (2) Alternatively, frequent pseudo self-compatibility (PSC) via aborted pollen may induce selfing of pseudogamous apomicts (mentor effects). Self-fertile pseudogamous genotypes will be selected for within mixed sexual–apomictic populations because of avoidance of interploidal crosses; in founder situations, SC provides reproductive assurance independent from pollinators and mating partners. SI pseudogamous genotypes will be selected against in mixed populations because of minority cytotype problems and high pollen discounting; in founder populations, SI reactions among clone mates will reduce seed set. Selection for SC genotypes will eliminate SI unless the apomict maintains a high genotypic diversity and thus a diversity of S-alleles within a population, or shifts to pollen-independent autonomous apomixis. The implications of a breakdown of SI in apomictic plants for evolutionary questions and for agricultural sciences are being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acuna CA, Martinez EJ, Quarin CL (2005) Sexual diploid and apomictic tetraploid races in Thrasya petrosa (Gramineae). Austr J Bot 53:479–484

    Article  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton, USA

    Google Scholar 

  • Baker HG (1955) Self compatibility and establishment after long distance dispersal. Evolution 9:347–349

    Article  Google Scholar 

  • Baker HG (1967) Support for Baker’s law—as a rule. Evolution 21:853–856

    Article  Google Scholar 

  • Baker HG, Stebbins GL (1965) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Barcaccia G, Mazzucato A, Albertini E, Zethof J, Gerats A, Pezzotti M, Falcinelli M (1998) Inheritance of parthenogenesis in Poa pratensis L.: auxin test and AFLP linkage analyses support monogenic control. Theor Appl Genetics 97:74–82

    Article  CAS  Google Scholar 

  • Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchin M (2006) Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96:322–334

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH (1996) The reproductive biology and genetics of island plants. Phil Trans Roy Soc London B Biol Sci 351:723–733

    Article  Google Scholar 

  • Barrett SCH, Harder LD, Worley AC (1996) The comparative biology of pollination and mating in flowering plants. Phil Trans Roy Soc London B Biol Sci 351:1271–1280

    Article  Google Scholar 

  • Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. Amer J Bot 94:1527–1533

    Article  Google Scholar 

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. California Press, Berkeley

    Google Scholar 

  • Bernardello G, Anderson GJ, Stuessy TF, Crawford DJ (2001) A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile). Bot Rev 67:255–308

    Article  Google Scholar 

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia 41:1255–1264

    Article  Google Scholar 

  • Brock MT (2004) The potential for genetic assimilation of a native dandelion species, Taraxacum ceratophorum (Asteraceae), by the exotic congener T. officinale. Amer J Bot 91:656–663

    Article  Google Scholar 

  • Burt A (2000) Sex, recombination and the efficacy of selection-was Weismann right? Evolution 54:337–351

    PubMed  CAS  Google Scholar 

  • Busch JW, Schoen DJ (2008) The evolution of self-incompatibility when mates are limiting. Trends Pl Sci 13:128–136

    Article  CAS  Google Scholar 

  • Carino DA, Daehler CC (1999) Genetic variation in an apomictic grass, Heteropogon contortus, in the Hawaiian Islands. Molec Ecol 8:2127–2132

    Article  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Carman JG (2001) The gene effect: genome collisions and apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, Mexico DF, pp 95–110

    Google Scholar 

  • Carman JG (2007) Do duplicate genes cause apomixis? In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. Gantner, Ruggell, pp 169–194

    Google Scholar 

  • Carr DE, Dudash MR (2003) Recent approaches into the genetic basis of inbreeding depression in plants. Phil Trans Royal Soc London B 358:1071–1084

    Article  CAS  Google Scholar 

  • Chapman H, Houliston GJ, Robson B, Iline I (2003) A case of reversal: the evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. Int J Pl Sci 164:719–728

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth D, Vekemans X, Castric V, Glemin S (2005) Plant self-incompatibility systems: a molecular evolutionary perspective. New Phytol 168:61–69

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  PubMed  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genetics 6:836–846

    Article  CAS  Google Scholar 

  • Crnokrak P, Barrett SCH (2002) Purging the genetic load: a review of experimental evidence. Evolution 56:2347–2358

    PubMed  Google Scholar 

  • Curtis MD, Grossniklaus U (2007) Amphimixis and apomixis: two sides of the same coin. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner Ruggell, Liechtenstein, pp 37–62

    Google Scholar 

  • Curtis MD, Grossniklaus U (2008) Molecular control of autonomous embryo and endosperm development. Sex Plant Reprod 21:79–88

    Article  Google Scholar 

  • Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Pl Syst Evol 244:189–199

    Article  CAS  Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Dickinson TA, Phipps JB (1986) Studies in Crataegus L. (Rosaceae: Maloideae) XIV. The breeding system of Crataegus crus-galli sensu lato in Ontario. Amer J Bot 73:116–130

    Article  Google Scholar 

  • Dickinson TA, Belaoussof S, Love RM, Muniyamma M (1996) North American black-fruited hawthorns. I. Variation in floral construction, breeding system correlates, and their possible evolutionary significance in Crataegus sect. Douglasii Loudon. Folia Geobot Phytotax 31:355–371

    Article  Google Scholar 

  • Dickinson TA, Lo E, Talent N (2007) Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Pl Syst Evol 266:59–78

    Article  Google Scholar 

  • Engelstädter J (2008) Constraints on the evolution of asexual reproduction. BioEssays 30:1138–1150

    Article  PubMed  CAS  Google Scholar 

  • Fehrer J, Krahulcová A, Krahulec F, Chrtek J, Rosenbaumová R, Bräutigam S (2007) Evolutionary aspects in Hieracium subgenus Pilosella. In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. Gantner Ruggell, Liechtenstein, pp 359–390

    Google Scholar 

  • Ferrer MM, Good-Avila SV (2006) Macrophylogenetic analyses of the gain and loss of self-compatibility in the Asteraceae. New Phytol 173:401–414

    Article  Google Scholar 

  • Friedman WE, Madrid EN, Williams JH (2008) Origin of the fittest: relating female gametophyte development to endosperm genetics. Int J Pl Sci 169:79–92

    Article  Google Scholar 

  • Garcia R, Asins MJ, Forner J, Carbonell EA (1999) Genetic analysis in Citrus and Poncirus by genetic markers. Theor Appl Genetics 99:511–518

    Article  CAS  Google Scholar 

  • Gornall RJ (1999) Population genetic structure in agamospermous plants. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor and Francis, London, pp 118–138

    Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson A (1953) Apomixis in higher plants. Part II. The causal aspects of apomixis. Lunds Univ Arsskr 43:71–178

    Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hörandl E (2008) Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). Int J Plant Sci 169:1219–1228

    Article  Google Scholar 

  • Hörandl E (2009a) Geographical parthenogenesis: opportunities for asexuality. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. Springer, Heidelberg, pp 161–186

    Chapter  Google Scholar 

  • Hörandl E (2009b) A combinational theory for maintenance of sex. Heredity (in press) (published online doi:10.1038/hdy.2009.85)

  • Hörandl E, Greilhuber J (2002) Diploid and autotetraploid sexuals and their relationships to apomicts in the Ranunculus cassubicus group:insights from DNA content and isozyme variation. Plant Syst Evol 234:85–100

    Article  CAS  Google Scholar 

  • Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials and ecology. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner Ruggell, Liechtenstein, pp 169–174

    Google Scholar 

  • Hörandl E, Temsch E (2009) Introgression of apomixis into sexual species is in the Ranunculus auricomus complex inhibited by mentor effects and ploidy barriers. Ann Bot 104:81–89

    Article  PubMed  Google Scholar 

  • Hörandl E, Dobeš C, Lambrou M (1997) Chromosomen- und Pollenuntersuchungen an österreichischen Sippen des Ranunculus auricomus-Komplexes. Bot Helv 107:195–209

    Google Scholar 

  • Hörandl E, Jakubowsky G, Dobeš C (2001) Isozyme and morphological diversity within apomictic and sexual taxa of the Ranunculus auricomus complex. Pl Syst Evol 226:165–185

    Article  Google Scholar 

  • Hörandl E, Cosendai A-C, Temsch E (2008) Understanding the geographic distributions of apomictic plants: a case for a pluralistic approach. Plant Ecol Div 1:309–320

    Article  Google Scholar 

  • Hörandl E, Greilhuber J, Klimova K, Paun O, Temsch E, Emadzade K, Hodálová I (2009) Reticulate evolution and taxonomic concepts in the Ranunculus auricomus complex (Ranunculaceae): insights from morphological, karyological and molecular data. Taxon 58:1194–1215

    Google Scholar 

  • Huber W (1988) Natürliche Bastardierungen zwischen weißblühenden Ranunculus-Arten in den Alpen (Natural hybridizations between white-flowered species of Ranunculus in the Alps) [German with English abstract]. Veröff Geobot Inst ETH Zürich 100:1–160

    Google Scholar 

  • Igic B, Bohs L, Kohn JR (2003) Historical inferences from the self-incompatibility locus. New Phytol 161:97–105

    Article  CAS  Google Scholar 

  • Izmaiłow R (1966) Macrosporogenesis in the apomictic species Ranunculus cassubicus. Acta Biol Cracov 8:183–195

    Google Scholar 

  • Izmaiłow R (1996) Reproductive strategy in the Ranunculus auricomus complex (Ranunculaceae). Acta Soc Bot Polon 65:167–170

    Google Scholar 

  • Kantama L, Lambert Y, Hu HF, de Jong H, de Vries S, Russinova E (2006) Use of the SSLP-based method for detection of rare apomictic events in a sexual AtSERK1 transgenic Arabidopsis population. Sex Plant Reprod 19:73–82

    Article  Google Scholar 

  • Kissling WD, Lord JM, Schnittler M (2006) Agamospermous seed production of the invasive tussock grass Nardus stricta L. (Poaceae) in New Zealand–evidence from pollination experiments. Flora 201:144–151

    Google Scholar 

  • Kollmann J, Steinger T, Roy BR (2000) Evidence of sexuality in European Rubus (Rosaceae) species based on AFLP and allozyme analysis. Amer J Bot 87:1592–1598

    Article  CAS  Google Scholar 

  • Koltunow A, Grossniklaus U (2003) Apomixis, a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  PubMed  CAS  Google Scholar 

  • Krahulcová A, Suda J (2006) A modified method of flow cytometric seed screen simplifies the quantification of progeny classes with different ploidy levels. Biol Plant 50:457–460

    Article  Google Scholar 

  • Leach C, Mayo O (2005) Outbreeding mechanisms in flowering plants. J Cramer, Stuttgart

    Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43

    Article  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford

    Google Scholar 

  • Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. Int J Pl Sci 153:370–380

    Article  Google Scholar 

  • Lloyd DG, Schoen DJ (1992) Self- and cross-fertilization in plants. I. Functional dimensions. Int J Pl Sci 153:358–369

    Article  Google Scholar 

  • Lo EYY, Stefanovic S, Dickinson TA (2009) Population genetic structure of diploid sexual and polyploidy apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest. Molec Ecol 18:1145–1160

    Article  CAS  Google Scholar 

  • Lundqvist A (1994) The self-incompatibility system in Ranunculus repens (Ranunculaceae). Hereditas 120:151–157

    Article  Google Scholar 

  • Lundqvist A (1998) Disomic control of self-compatibility in the tetraploid Ranunculus repens (Ranunculaceae). Hereditas 128:181–183

    Article  Google Scholar 

  • Mable BK (2004) Polyploidy and self-compatibility: is there an association? New Phytol 162:803–811

    Article  Google Scholar 

  • Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2005) A comprehensive analysis of gene expression alterations in a newly synthesized Paspalum notatum autotetraploid. Plant Sci 169:211–220

    Article  CAS  Google Scholar 

  • Martínez EJ, Urbani MH, Quarin CL, Ortiz JPA (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25

    Article  PubMed  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. The Plant J 21:97–108

    Article  CAS  Google Scholar 

  • Meadows R (2009) Engineering sexless seeds as a path to high-yield crops. PLos Biol 7(6):e1000118

    Article  PubMed  CAS  Google Scholar 

  • Meirmans PG, den Nijs HCM, Van Tienderen PH (2006) Male sterility in triploid dandelions: asexual females vs. asexual hermaphrodites. Heredity 96:45–62

    PubMed  CAS  Google Scholar 

  • Michaels HJ, Bazzaz FA (1986) Resource allocation and demography of sexual and apomictic Antennaria parlinii. Ecology 67:27–36

    Article  Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants London. Chapman and Hall, UK

    Google Scholar 

  • Mraz P (2003) Mentor effects in the genus Hieracium s.str. (Compositae, Lactuceae). Folia Geobot 38:345–350

    Article  Google Scholar 

  • Naumova TN (1993) Apomixis in angiosperms. Nucellar and integumentary embryony. CRC press, Boca Raton

    Google Scholar 

  • Nogler GA (1971) Genetik der Aposporie bei Ranunculus auricomus s.l. W. Koch. I. Embryologie. Ber Schweiz Bot Gesell 81:139–179

    Google Scholar 

  • Nogler GA (1984) Genetics of apospory in apomictic Ranunculus auricomus: 5 conclusion. Bot Helv 94:411–423

    Google Scholar 

  • Noirot M, Couvet D, Hamon S (1997) Main role of self-pollination rate on reproductive allocations in pseudogamous apomicts. Theor Appl Genet 95:479–483

    Article  Google Scholar 

  • Noyes RD (2007) Apomixis in the Asteraceae: diamonds in the rough. Funct Pl Sci Biotechnol 1:207–222

    Google Scholar 

  • Noyes RD, Soltis DE (1996) Genotypic variation in agamospermous Erigeron compositus (Asteraceae). Amer J Bot 83:1292–1303

    Article  CAS  Google Scholar 

  • Nybom H (1986) Active self-pollination in blackberries (Rubus subgen. Rubus, Rosaceae). Nordic J Bot 5:521–525

    Article  Google Scholar 

  • Ozias-Akins P, Van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genetics 41:509–537

    Article  CAS  Google Scholar 

  • Palop-Esteban M, Segarra-Moragues JG, Gonzalez-Candelas F (2007) Historical and biological determinants of genetic diversity in the highly endemic triploid sea lavender Limonium dufourii (Plumbaginaceae). Mol Ecol 16:3814–3827

    Article  PubMed  CAS  Google Scholar 

  • Paun O, Greilhuber J, Temsch E, Hörandl E (2006a) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Molec Ecol 15:897–910

    Article  CAS  Google Scholar 

  • Paun O, Stuessy TF, Hörandl E (2006b) The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytol 171:223–236

    Article  PubMed  CAS  Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in panicoid grasses. Apomixis Newsl 5:8–15

    Google Scholar 

  • Quarin CL (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex Pl Repr 11:331–335

    Article  Google Scholar 

  • Rambuda TD, Johnson SD (2004) Breeding systems of invasive alien plants in South Africa: does Baker’s rule apply? Diversity Distrib 10:409–416

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Ravi M, Marimuthu MPA, Siddiqi I (2008) Gamete formation without apomixis in meiosis. Nature 451:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Richards AJ (1997) Plant breeding. Chapman and Hall London, UK

    Google Scholar 

  • Robson NKB (1981) Studies in the genus Hypericum L. (Guttiferae) 2. Characters of the genus. Bull Brit Mus Nat Hist 8:55–226

    Google Scholar 

  • Roy BA (1995) The breeding system of six species of Arabis (Brassicaceae). Amer J Bot 92:1797–1810

    Google Scholar 

  • Rutishauser A (1954) Die Entwicklungserregung des Endosperms bei pseudogamen. Ranunculusarten Mitt Naturforsch Gesell Schaffhausen 25:1–45

    Google Scholar 

  • Savidan Y (2007) Apomixis in higher plants. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner, Ruggell, pp 15–22

    Google Scholar 

  • Siena LA, Sartor ME, Espinoza F, Quarin CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex Plant Reprod 21:205–215

    Article  CAS  Google Scholar 

  • Spielmann M, Vinkenoog R, Scott RJ (2003) Genetic mechanisms of apomixis. Phil Trans Roy Soc London B 358:1095–1103

    Article  CAS  Google Scholar 

  • Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stone JL (2002) Molecular mechanisms underlying the breakdown of gametophytic self-incompatibility. Quart Rev Biol 77:17–32

    Article  PubMed  CAS  Google Scholar 

  • Talent N (2009) Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae. Theory Biosci 128:121–138

    Article  PubMed  Google Scholar 

  • Talent N, Dickinson TA (2007) Endosperm formation in aposporous Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae): parallels to Ranunculaceae and Poaceae. New Phytol 173:231–249

    Article  PubMed  Google Scholar 

  • Tas ICQ, Van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum) I. The inheritance of apomixis. Heredity 83:707–714

    Article  PubMed  Google Scholar 

  • Van Dijk PJ (2007) Potential and realized costs of sex in dandelions, Taraxacum officinale s.l. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner, Ruggell, pp 215–233

    Google Scholar 

  • Van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. In: Bakker F, Chatrou L, Gravendeel B, Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process. Gantner, Ruggell, pp 101–116

    Google Scholar 

  • Vijverberg K, Van Dijk PJ (2007) Genetic linkage mapping of apomixis loci. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner, Ruggell, pp 137–158

    Google Scholar 

  • Vinkenoog R, Bushell C, Spielman M, Adams S, Dickinson HG, Scott RJ (2003) Genomic imprinting and endosperm development in flowering plants. Molec Biotechnol 25:149–184

    Article  CAS  Google Scholar 

  • Voigt ML, Melzer M, Rutten T, Mitchell-Olds T, Sharbel TF (2007) Gametogenesis in the apomictic Boechera holboellii complex: the male perspective. In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. ARG-Gantner, Ruggell, pp 235–258

    Google Scholar 

  • Whitton J, Sears C, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Pl Sci 169:169–182

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Austrian Research Foundation (FWF), P 19006-B03, and the Austrian Academy of Sciences, Commission for Interdisciplinary Ecological Studies (KIÖS), P 2007-03. I thank Timothy A. Dickinson, Scott D. Russell and one anonymous referee for valuable suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Hörandl.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörandl, E. The evolution of self-fertility in apomictic plants. Sex Plant Reprod 23, 73–86 (2010). https://doi.org/10.1007/s00497-009-0122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-009-0122-3

Keywords

Navigation