Skip to main content
Log in

Identification of genes showing differential expression between morphs in developing flowers of Primula vulgaris

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Heteromorphic self-incompatibility systems provide an excellent model for studying both intraspecific breeding barriers and the regulation of floral organ size and positioning, yet at the molecular level, they are almost completely uncharacterized. In this study, a subtracted cDNA library was generated from developing and mature floral tissues of the thrum morph of Primula vulgaris, subtracted with the same tissues from the pin morph. Differential screening and reverse transcriptase-polymerase chain reaction analysis identified 11 classes of cDNA that were differentially expressed between developing floral morphs. A number of these classes have significant homology to members of gene families implicated in plant development, including rapid alkalinization factors, DExH box RNA helicases, SKS multi-copper oxidases, and AtCHX ion-transporter families, consistent with their potential involvement in the regulation of floral heteromorphy. None of the cDNAs identified appear to be linked to the Primula S-locus suggesting that they are not components of the S-locus itself, and are more likely downstream components of developmental pathways leading to floral heteromorphy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albani D, Sardana R, Robert LS, Altosaar I, Arnison PG, Fabijanski SF (1991) A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen—molecular characterization and analysis or promoter activity in transgenic tobacco plants. Plant J 2:331–342

    Google Scholar 

  • Al Wadi H, Richards AJ (1993) Primary homostyly in Primula L. subgenus Sphondylia (Dudy) Rupr. and the evolution of distyly in Primula. New Phytol 124:339–338

    Article  Google Scholar 

  • Anthanasiou A, Khosravi D, Shore JS (2003) Characterization and localization of short-specific polygalacturonase in distylous Turnera subulata (Turneraceae). Am J Bot 90:675–682

    Google Scholar 

  • Barbacar N, Hinnisdaels S, Farbos I, Monéger F, Lardon A, Delichère C, Mouras A, Negrutiu I (1997) Isolation of early genes expressed in reproductive organs of the dioecious white campion (Silene latifolia) by subtraction cloning using an asexual mutant. Plant J 12:805–817

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH (1988) The evolution, functioning and breakdown of heteromorphic incompatibility systems. In: Lovett Doust J, Lovett Doust L (eds) Plant reproductive ecology, patterns and strategies. Oxford University Press, New York, pp 98–124

    Google Scholar 

  • Barrett SCH, Cruzan MB (1994) Incompatibility in heterostylous plants. In: Williams EG (ed) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic Publishers, Dordrech, pp 189–229

    Google Scholar 

  • Bedinger P, Parsons P, Clark M, Covey P, Arthur-Asmah R (2003) PEX proteins, pollen specific LRX (Leucine Rich Repeat Extensin Chimera) proteins. In: Proceedings of the 7th international congress on plant molecular biology. Barcelona, Spain, pp S20–S69

  • Bosch M, Hepler PK (2005) Silencing of tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 17:3219–3226

    CAS  Google Scholar 

  • Charlesworth D, Vekemans X, Castric V, Glemin S (2005) Plant self-incompatibility systems: a molecular evolutionary perspective. New Phytol 168:61–69

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Chen X (2004) Posttranscriptional control of plant development. Curr Opin Plant Biol 7:20–25

    Article  PubMed  CAS  Google Scholar 

  • Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–994

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1862) On the two forms, or dimorphic conditions, in the species of Primula, and on their remarkable sexual relations. Proc Linn Soc (Bot) 6:105–139

    Google Scholar 

  • Dowd PE, McCubbin AG, Wang X, Verica JA, Tsukamoto T, Ando T, Kao T-h (2000) Use of Petunia inflata as a model for the study of solanaceous type self-incompatibility. Ann Bot 85(Suppl. A):87–93

    Article  CAS  Google Scholar 

  • Dowrick VPJ (1956) Heterosyly and homostyly in Primula obonica. Heredity 10:219–236

    Google Scholar 

  • Fisher RA, Mather K (1943) Inheritance of style length in Lythrum salicaria. Ann Eugen 12:1–12

    Google Scholar 

  • Fobis-Loisy I, Miege C, Gaude T (2004) Molecular evolution of the S locus controlling mating in the Brassicaceae. Plant Biol 6:109–118

    Article  PubMed  CAS  Google Scholar 

  • Ganders FR (1979) The biology of heterostyly. NZ J Bot 17:607–635

    Google Scholar 

  • Germain H, Chevalier E, Caron S, Matton DP (2005) Characterization of five RALF-like genes from Solanum chacoense provides support for a developmental role in plants. Planta 220:447–454

    Article  PubMed  CAS  Google Scholar 

  • Gibbs PE (1986) Do homomorphic and heteromorphic self-incompatibility systems have the same sporophytic mechanism? Plant Syst Evol 154:285–323

    Article  Google Scholar 

  • de Groot P, Weterings K, de Been M, Witnik F, Hulznik R, Custers J, van Herpen M, Wullems G (2004) Silencing of a pollen-specific gene NTP303 and its family members in tobacco affects in vivo pollen tube growth and results in male sterile plants. Plant Mol Biol 55:715–726

    Article  PubMed  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J, Shivanna KR (1981) Heterostyly in Primula. 1. Fine-structural and cytochemical features of the stigma and style in Primula vulgaris Huds. Protoplasma 107:171–187

    Article  Google Scholar 

  • Hildebrand F (1864) Botanisches Zeitung. January 1st 1864. Quoted by Darwin (1877)

  • Jacobs J, Roe JL (2005) SKS6, a multicopper oxidase-like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development. Planta 222:652–666

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Running MP, Meyerowitz EM (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126:5231–5243

    PubMed  CAS  Google Scholar 

  • Kao T-h, Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16(Suppl.):S72–S83

    Article  PubMed  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol Biol 25:791–798

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM, Hall JC (2005) Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Biol 8:13–18

    Article  PubMed  CAS  Google Scholar 

  • Kurian V, Richards AJ (1997) A new recombinant in the ‘S’ supergene in Primula. Heredity 78:383–390

    Article  Google Scholar 

  • Lacoux JL, Gutierrez L, Dantin F, Beaudoin B, Roger D, Laine E (2003) Antisense transgenesis of tobacco with a flax pectin methylesterase affects pollen ornamentation. Protoplasma 222:205–209

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Macmillan JD (1970) Mode of action of pectic enzymes. III. Sites of action of tomato pectin esterase on highly esterified pectin. Biochemistry 9:1930–1934

    Article  PubMed  CAS  Google Scholar 

  • Lewis D (1949) Incompatibility in flowering plants. Biol Rev 24:472–496

    Article  Google Scholar 

  • Lorkovic ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 30:623–635

    Article  PubMed  CAS  Google Scholar 

  • Lukyanov K, Gurskaya N, Sverdlov ED, Sievert PD (1996) Suppression hybridization: a new method for generating differentially regulated or tissue specific probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  Google Scholar 

  • Manfield IW, Pavlov VK, Li J, Cook HE, Hummel F, Gilmartin PM (2005) Molecular characterization of DNA sequences from the Primula vulgaris S-locus. J Exp Bot 56:1177–1188

    Article  PubMed  CAS  Google Scholar 

  • McCubbin AG, Wang X, Kao T-h (2000) The use of differential display to identify cDNA markers at the S-locus of Petunia inflata. Genome 43:619–627

    Article  PubMed  CAS  Google Scholar 

  • Nari J, Noat G, Ricard J (1992) Pectin methylesterase, metal ions and plant cell wall extension. Biochemistry 279:343–350

    Google Scholar 

  • de Nettancourt D (1977) Incompatibility in angiosperms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Olsen AN, Mundy J, Skriver K (2002) Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biol 2:441–451

    PubMed  CAS  Google Scholar 

  • Ornduff R (1979) Pollen flow in a population of Primula vulgaris Huds. Bot J Linn Soc 78:1–10

    Article  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847

    Article  PubMed  CAS  Google Scholar 

  • Piper JG, Charlesworth B, Charlesworth D (1986) Breeding system evolution in Primula vulgaris and the role of reproductive assurance. Heredity 56:207–217

    Google Scholar 

  • Richards AJ (1986) Plant breeding systems, 1st edn. Allen and Unwin, London

    Google Scholar 

  • Richards AJ (1997) Plant breeding systems, 2nd edn. Allen and Unwin, London

    Google Scholar 

  • Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling 113:RE22

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Sze H, Padmanaban S, Cellier F, Honys D, Cheng N-H, Bock KW, Conéjéri G, Li X, Twell D, Ward JM, Hirschi KD (2004) Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol 136:2532–2547

    Article  PubMed  CAS  Google Scholar 

  • Tamari F, Shore JS (2004) Distribution of style and pollen polygalacturonases among distylous and homostylous Turnera and Piriqueta spp. (Turneraceae). Heredity 92:380–385

    Article  PubMed  CAS  Google Scholar 

  • Veena, Reddy VS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 18:231

    Article  Google Scholar 

  • Wakeley PR, Rogers HJ, Rozycka M, Greenland AJ, Hussey PJ (1998) A maize pollen specific pectin methyl esterase-like gene, ZmC5, specifically expressed in pollen. Plant Mol Biol 37:187–192

    Article  PubMed  CAS  Google Scholar 

  • Western TL, Cheng Y, Chen X (2002) HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis. Development 129:1569–1581

    PubMed  CAS  Google Scholar 

  • Weterings K, Reijnen W, van Aarsen R, Kortstee A, Spijkers J, van Herpen M, Schrauwen J, Wullems G (1992) Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during male gametogenesis and germination. Plant Mol Biol 18:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Wittink FRA, Knuiman B, Derksen J, Capkova V, Twell D, Schrauwen D, Schrauwen JAM, Wullems G (2000) The pollen-specific gene NTP303 encodes a 69-kDA glycoprotein associated with the vegetative membranes and the cell wall. Sex Plant Reprod 12:276–284

    Article  CAS  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    Article  PubMed  CAS  Google Scholar 

  • Zik M, Irish VF (2003) Flower development: initiation, differentiation, and diversification. Annu Rev Cell Dev Biol 19:119–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported using start-up funds from the College of Sciences, Washington State University and from the Center for Reproductive Biology, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. McCubbin.

Additional information

Communicated by Teh-hui Kao

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCubbin, A.G., Lee, C. & Hetrick, A. Identification of genes showing differential expression between morphs in developing flowers of Primula vulgaris . Sex Plant Reprod 19, 63–72 (2006). https://doi.org/10.1007/s00497-006-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-006-0022-8

Keywords

Navigation