Skip to main content
Log in

SKS6, a multicopper oxidase-like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development

  • Orginal Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

SKU5-Similar 6 (SKS6) is a one of a large gene family of 19 members in Arabidopsis thaliana (L.) Heynh that encode multicopper oxidase-like proteins that are related to ferroxidases, ascorbate oxidases and laccases. Only one member of the family has been previously studied; Skewed5 (SKU5) is involved in the control of root growth. The encoded SKS6 protein, like SKU5 appears to lack a functional copper-binding site and is most closely related to Bp10 from Brassica napus and Ntp303 from Nicotiana tobacum. The SKS6 promoter contains many putative regulatory sites and differential expression of an SKS6::GUS reporter gene revealed selective induction in several seedling tissues including guard cells, root cortex cells, and leaf margin hydathodes. It was also expressed later in flower development in flower primordia, ovules, and the abscission zones of seeds and siliques. Furthermore, SKS6 was upregulated in roots in response to treatment of seedlings with the hormones abscisic acid, indole-3 acetic acid, 2,4-dichlorophenoxyacetic acid and aminocyclopropane-1-carboxylate. A loss-of function sks6-1 T-DNA insertion allele revealed that cotyledon vascular patterning is affected in the mutant, suggesting a role for the protein in metabolism of nutrients or hormones in the hydathodes, the sites of auxin synthesis and chemical recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2, 4-D:

2,4-dichlorophenoxyacetic acid

ABA:

Abscisic acid

ABRC:

Arabidopsis Biological Resource Center

ACC:

Aminocyclopropane-1-carboxylate

AO:

Ascorbate oxidase

BA N6 :

Benzyladenine

GFP:

Green flourescent protein

GUS:

β-glucuronidase

IAA:

Indole-3 acetic acid

LB:

Luria Broth

M&S:

Murashige and Skoog

MES:

2-[N-morpholino] ethane sulfonic acid

dNTP:

Deoxynucleotide triphosphate

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription-polymerase chain reaction

Skewed5:

SKU5

SKS6:

SKU5-Similar 6

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  PubMed  CAS  Google Scholar 

  • Albani D, Sardana R, Robert LS, Altosaar I, Arnison PG, Fabijanski SF (1992) A Brassica napus gene family which show sequence similarity to ascorbate oxidase is expressed in developing pollen: molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J 2:331–342

    PubMed  CAS  Google Scholar 

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  PubMed  CAS  Google Scholar 

  • Aloni R (2001) Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Reg 20:22–34

    Article  CAS  Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brodgen D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Asao H, Yoshida K, Nishi Y, Shinmyo A (2003) Wound-responsive cis-element in the 5′-upstream region of cucumber ascorbate oxidase gene. Biosci Biotechnol Biochem 67:271–277

    Article  PubMed  CAS  Google Scholar 

  • Avigliano L, Finazzi-Agro A (1997) Biological function and enzyme kinetics of ascorbate oxidase. In: Messerschmidt A (ed), Multi-copper oxidases. World Scientific, Singapore, pp 251–284

    Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Binz T, Canevascini G (1996) Differential production of laccases in Dutch elm disease pathogens Ophiostoma ulmi and O. novo-ulmi. Mycol Res 100:1060–1064

    CAS  Google Scholar 

  • Burkle L, Cedzich A, Dopke C, Stransky H, Okumoto S, Gillissen B, Kuhn C, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34:13–26

    Article  PubMed  CAS  Google Scholar 

  • Carland FM, McHale NA (1996) LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122:1811–1819

    PubMed  CAS  Google Scholar 

  • Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–2058

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong X, Agarwal M, Zhu J (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Ann Rev Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Deyholos MK, Cordner G, Beebe D, Sieburth LE (2000) The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127:3205–3213

    PubMed  CAS  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rol D promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1953) Plant Anatomy (1st edn). Chapman and Hall, London

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    PubMed  CAS  Google Scholar 

  • Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q, Wang R, Crawford NM (2002) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1(CHL1) is regulated by auxin in both shoots and roots. J Exp Bot 53:835–844

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q, Young J, Crawford NM (2003) The nitrate transporter AtNRT1.1(CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15:107–117

    Article  PubMed  CAS  Google Scholar 

  • Haruta M, Murata M, Kadokura H, Homma S (1999) Immunological and molecular comparison of polyphenol oxidase in Rosaceae fruit trees. Phytochem 50:1021–1025

    Article  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999a) Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999b) Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Honma MA, Baker BJ, Waddell CS (1993) High frequency germinal transposition of Dsals in Arabidopsis. Proc Natl Acad Sci 90:6242–6246

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Barber C, Daniels M (1998) Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a system for studying early infection events in bacterial pathogenesis. Mol Plant Microbe Interact 11:537–543

    Article  CAS  Google Scholar 

  • Jacobs WP (1952) The role of auxin in differentiation of xylem around a wound. Am J Bot 39:301–309

    Article  CAS  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenanace of the quiescent center: implications for organization of root meristems. Development 121:2825–2833

    CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Kiefer-Meyer M-C, Gomord V, O’Connell A, Halpin C, Faye L (1996) Cloning and sequence analysis of laccase-encoding cDNA clones from tobacco. Gene 178:205–207

    Article  PubMed  CAS  Google Scholar 

  • Kiiskinen LL, Viikari L, Kruus K (2001) Purification and characterisation of a novel lacase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59:198–204

    Google Scholar 

  • Kim C, Lorenz WW, Hoopes JT, Dean JFD (2001) Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 183:4866–4875

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development. Nature 399:144–148

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • LaFayette PR, Eriksson KEL, Dean JFD (1999) Characterization and heterologous expression of laccase cDNAa from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  PubMed  CAS  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  PubMed  CAS  Google Scholar 

  • Litvintseva AP, Henson JM (2002) Cloning, characterization and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl Environ Microbiol 68:1305–1311

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  PubMed  CAS  Google Scholar 

  • Machonkin TE, Quintanar L, Palmer AE, Hassett R, Severance S, Kosman DJ, Solomon EI (2001) Spectroscopy and reactivity of the Type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases. J Am Chem Soc 123:5507–5517

    Article  PubMed  CAS  Google Scholar 

  • Martin I, Lohse G, Hedrich R (1991) Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells. Nature 353:758–762

    Article  Google Scholar 

  • Mattsson J, Sung Z, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    PubMed  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new function for an old enzyme. Phytochem 60:551–565

    Article  CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Visualizing changes in cytosolic free Ca++ during the response of stomatal guard cells to abscisic acid. Plant Cell 4:1113–1122

    Article  Google Scholar 

  • McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  PubMed  CAS  Google Scholar 

  • Messerschmidt A (1997) Multi-copper oxidases. World Scientfic, Singapore

    Google Scholar 

  • Neff M, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  • Passarinho PA, Hengel AJV, Fransz PF, Vries SCD (2001) Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212:556–567

    Article  PubMed  CAS  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes J, Foyer C (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  PubMed  CAS  Google Scholar 

  • Plesch G, Ehrhardt T, Mueller-Roeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J 28:455–464

    Article  PubMed  CAS  Google Scholar 

  • Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, Philpott CC (2001) Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276:49244–49250

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A-M, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in oplar. Plant Physiol 129:145–155

    Article  PubMed  CAS  Google Scholar 

  • Rogers SG, Klee HJ, Horsch RB, Fraley RT (1987) Improved vectors for plant transformation: expression cassette vectors and new selectable markers. Meth Enzymol 153:253–277

    Article  CAS  Google Scholar 

  • Romberger JA, Hejnowicz Z, Hill JF (1993) Plant structure: function and development. Springer-Verlag, New York, Berlin, Heidelberg

    Google Scholar 

  • Samac D, Hironaka C, Yallaly P, Shah D (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93:907–914

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—A laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR (2002) The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell 14:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Weigel D, Yanofsky MF (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J 20:259–263

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  PubMed  CAS  Google Scholar 

  • Solano F, Lucas-Elio P, Lopez-Serrano D, Fernandez E, Sanchez-Amat A (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 204:175–181

    Article  PubMed  CAS  Google Scholar 

  • Tucker GA, Zhang JL (1996) Expression of polygalacturonase and pectinesterase in normal and transgenic tomatoes. In: Visser J, Voragen AGJ (eds) Pectins and pectinases 1. Elsevier Science, Amsterdam, pp 347–354

    Chapter  Google Scholar 

  • Weterings K, Wim RJ, Vanaarssen R, Kortstee A, Spijkers J, Vanherpen M, Schrauwen J, Wullems G (1992) Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during microgametogenesis and germination. Plant Mol Biol 18:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Willemsen V, Friml J, Grebe M, Torn AVD, Palme K, Sheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311

    PubMed  Google Scholar 

  • Xu N, Hagen G, Guilfoyle T (1997) Multiple auxin response modules in the soybean SAUR 15A. Plant Sci 136:193–201

    Article  Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (urushi). J Chem Soc 43:472–486

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Kansas State University Agricultural Experiment Station project KS517 and the Terry C. Johnson Center for Basic Cancer Research. JJ was supported by Kansas State University Plant Biotechnology Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith L. Roe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J., Roe, J.L. SKS6, a multicopper oxidase-like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development. Planta 222, 652–666 (2005). https://doi.org/10.1007/s00425-005-0012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0012-3

Keywords

Navigation