Skip to main content
Log in

Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.)

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Members of the Cucurbitaceae family display a range of sexual phenotypes including various combinations of male, female, or bisexual flowers. Ethylene appears to be a key hormone regulating the sex determination process. Application of ethylene, or inhibition of ethylene action, increases or decreases the number of pistil-bearing buds, respectively. Elevated levels of ethylene production and expression of genes for ethylene biosynthesis, have been correlated with pistillate flower production. In this study, we sought to determine the effect of modified endogenous ethylene production on sex expression by constitutively expressing ACS (1-aminocyclopropane-1-carboxylate synthase), the first committed enzyme for ethylene biosynthesis, in transgenic melons (Cucumis melo L.). Most melon genotypes are andromonoecious, where an initial phase of male flowers is followed by a mixture of bisexual and male flowers. ACS melon plants showed increased ethylene production by leaves and flower buds, and increased femaleness as measured by earlier and increased number of bisexual buds. ACS melons also had earlier and increased number of bisexual buds that matured to anthesis, suggesting that ethylene is important not only for sex determination, but also for development of the bisexual bud to maturity. Field studies showed that ACS melons had earlier mature bisexual flowers, earlier fruit set, and increased number of fruit set on closely spaced nodes on the main stem. These results provide a direct demonstration of the importance of endogenous ethylene production for female reproductive processes in melon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth C, Parker J, Buchanan-Wollaston V (1998) Sex determination in plants. Curr Top Dev Biol 38:167–223

    Article  PubMed  CAS  Google Scholar 

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. Plant molecular biology manual. Kluwer, Boston, A3:1–19

  • Augustine JJ, Baker LR, Sell HM (1973). Female flower induction on androecious cucumber, Cucumis sativus. L. J Amer Soc Hort Sci 98:197–199

    Google Scholar 

  • Avila-Sakar G, Krupnick GA, Stephenson AG (2001) Growth and resource allocation in Cucurbita pepo spp. texana: effects of fruit removal. Int J Plant Sci 162:1089–1095

    Article  Google Scholar 

  • Ayub R, Guis M, BenAmor M, Gillot L, Roustan JP, Latche A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruit. Nat Biotechnol 14:862–866

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH (1998) The evolution of mating strategies in flowering plants. Trends Plant Sci 3:335–341

    Article  Google Scholar 

  • Bui AQ, O’Neill, SD (1998) Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol 116:419–428

    Article  PubMed  CAS  Google Scholar 

  • Byers RE, Baker LR, Dilley DR, Sell HM (1972a) Chemical induction of perfect flowers on a gynoecious line of muskmelon, Cucumis melo L. HortScience 913:321–331

    Google Scholar 

  • Byers RE, Baker LR, Sell HM, Herner RC, Dilley DR (1972b) Ethylene: A natural regulator of sex expression of Cucumis melo L. Proc Natl Acad Sci 69:717–720

    Article  PubMed  CAS  Google Scholar 

  • Calderron-Urrea A, Dellaporta SL (1999) Cell death and protection genes determine the fate of pistils in maize. Development 126:435–441

    PubMed  Google Scholar 

  • De Martinis D, Mariani C (1999) Silencing gene expression of the ethylene forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco plants. Plant Cell 11:1061–1071

    Article  PubMed  CAS  Google Scholar 

  • Delesalle VA, Mooreside PD (1995) Estimating the costs of allocation to male and female functions in a monoecious cucurbit, Lagenaria siceraria. Oecologia 102:9–16

    Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1993) Sex determination process in maize. Science 266:1501–1505

    Article  Google Scholar 

  • Den Nijs A, Visser D (1980) Induction of male flowering in gynoecious cucumbers (Cucumis sativus L.) by silver ions. Euphytica 29:237–280

    Google Scholar 

  • El Keblawy A, Lovett Doust J (1996) Resource re-allocation following fruit removal in cucurbits: patterns in cantaloupe melons. New Phytol 134:413–422

    Article  Google Scholar 

  • Ezura HH, Amagai D, Yoshioka D, Oosawa, K (1992) Highly frequent appearance of tetraploidy in regenerated melon plants, a universal phenomenon in tissue cultures of melon (Cucumis melo). Plant Sci 85:209–213

    Article  Google Scholar 

  • Fang G, Grumet R (1990) Agrobacterium tumefasciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

    Article  CAS  Google Scholar 

  • Fluhr R, Mattoo AK (1996) Ethylene - biosynthesis and perception. Crit Rev Plant Sci 15:479–523

    Article  CAS  Google Scholar 

  • Galun E, Yung Y, Lang A (1963) Morphogenesis of floral buds of cucumber cultured in vitro. Dev Biol 6:370–387

    Article  CAS  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Goffinet M (1990) Comparative ontogeny of male and female flowers of Cucumis sativus. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca NY, pp 288–304

    Google Scholar 

  • Guis M, Botondi R, BenAmor M, Ayub R, Bouzayen M, Pech JC, Latche A (1997) Ripening associated biochemical traits of Charantais melons expressing an antisense ACC oxidase transgene. J Amer Soc Hort Sci 122:748–751

    CAS  Google Scholar 

  • Hao YJ, Wang DH, Peng YB, Bai SL, Xu LY, Li YQ, Zu ZH, Bai SN (2003) DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.) Planta 217:888–895

    Article  PubMed  CAS  Google Scholar 

  • Hayata Y, Nimi Y, Inoue K, Kondao S (2000) CPPU and BA, with and without pollination, affect set, growth, and quality of muskmelon fruit. HortScience 35:868–870

    CAS  Google Scholar 

  • Hayata Y, Li XX, Osajima Y (2002) Pollination and CPPU treatment increase endogenous IAA and decrease endogenous ABA in muskmelons during early development. J Am Soc Hort Sci 127:908–911

    CAS  Google Scholar 

  • Hoekema A, Hooykaas PJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefasciens Ti-plasmid plant genetics. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Janoudi AK, Widders IE (1993) Water deficits and fruiting affect carbon assimilation and allocation in cucumber plants. HortScience 28:98–100

    Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a Molecular perspective. Annu Rev Genet 32:227–254

    Article  PubMed  CAS  Google Scholar 

  • Jones ML, Woodson WR (1999) Interorgan signaling following pollination in carnations. J Am Soc Hort Sci 124:598–604

    Google Scholar 

  • Kahana A, Silberstein L, Kessler N, Goldstein RS, Perl-Treves R (1999) Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol 41:517–528

    Article  PubMed  CAS  Google Scholar 

  • Kamachi S, Sekimoto H, Kondo N, Sakai S (1997) Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol 38:1197–1206

    PubMed  CAS  Google Scholar 

  • Kamachi S, Mizusawa H, Matsura S, Sakai S (2000) Expression of two 1-aminocyclopropane-1-carboxylate synthase genes, CS-ACS1 and CS-ACS2, correlated with sex phenotypes in cucumber plants (Cucumis sativus L.) Plant Biotechnol 17:69–74

    CAS  Google Scholar 

  • Karchi Z (1970) Effects of 2-chloroethanephosphonic acid on flower types and flowering sequences in muskmelon. J Am Soc Hort Sci 95:575–578

    Google Scholar 

  • Kater MM, Franken J, Carney KJ, Colombo L, Angenent GC (2001) Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell 13:481–493

    Article  PubMed  CAS  Google Scholar 

  • Kenigsbuch D, Cohen Y (1989) The inheritance of gynoecy in muskmelon. Genome 33: 317–320

    Google Scholar 

  • Krupnick GA, Brown KM, Stephenson AG (1999) The influence of fruit on the regulation of internal ethylene concentration and sex expression in Cucurbita texana. Int J Plant Sci 160:321–330

    Article  CAS  Google Scholar 

  • Kubicki B (1969) Comparative studies on sex determination in cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.). Genet Pol 10:167–183

    Google Scholar 

  • Little HA, Hammar SA, Grumet R. 2005. Modified sex expression in transgenic melon expressing the dominant mutant ethylene receptor gene, At-etr1-1, under control of floral targeted promoters. http://abstracts.aspb.org/pb2005/public/M04/9066.html

  • Lizada MCC, Yang SF (1979) Simple and sensitive assay for 1-aminocyclopropane carboxylic acid. Anal Biochem 100:140–145

    Article  PubMed  CAS  Google Scholar 

  • Lower RL, Nienhuis J (1990) Prospects for increasing yields of cucumbers via Cucumis sativus var. hardwickii germplasm. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, pp 397–405

    Google Scholar 

  • Makus DJ, Pharr DM, Lower RL (1975) Some morphogenic differences between monoecious and gynoecious cucumber seedlings as related to ethylene production. Plant Physiol 55:352–355

    PubMed  CAS  Google Scholar 

  • McMurray AL, Miller CH (1968) Cucumber sex expression modified by 2-chloroethanephosphonic acid. Science 162:1397–1398

    Article  PubMed  CAS  Google Scholar 

  • Mibus H, Tatlioglu T (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet 109:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Nugent PE (1994a) Monoecious flowering, tetraploid, virescent melon C879-J2-4X. HortScience 29:47–48

    Google Scholar 

  • Nugent PE (1994b) Tetraploid ‘Planters Jumbo” melon lines C883-m6-4x and 67-m6-100-4x. HortScience 29:48–49

    Google Scholar 

  • O’Neill SD (1997) Pollination regulation of flower development. Ann Rev Plant Physiol Plant Mol Biol 48:547–574

    Article  CAS  Google Scholar 

  • Owens KW, Peterson CE, Tolla GE (1980) Production of hermaphrodite flowers on gynoecious muskmelon by silver nitrate and aminoethyoxyvinylglycine. HortScience 15:654–655

    CAS  Google Scholar 

  • Papadopoulou E (2002) Sex expression in cucurbits: the role of ethylene synthesis and perception and sex determination genes. PhD Dissertation. Michigan State University

  • Papadopoulou E, Grumet R (1998) Exogenous brassinosteroids influence sex expression and vegetative development of cucumber (Cucumis sativus L.) plants. In: McCreight JD (ed) Cucurbitaceae ‘98. Evaluation and enhancement of cucurbit germplasm. ASHS Press, Alexandria, pp 235–240

    Google Scholar 

  • Perl-Treves R (1999) Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus. In: Ainsworth CC (eds) Sex determination in plants. Bios Scientific Publishers, Oxford, pp 189–215

    Google Scholar 

  • Pike LM, Peterson CE (1969) Gibberellin A4/A7 for induction of staminate flowers on the gynoecious cucumber (Cucumis sativus L.). Euphytica 18:106–109

    CAS  Google Scholar 

  • Robinson RW, Shannon S, La Guardia MD (1969) Regulation of sex expression in the cucumber. BioScience 19:141–142

    Article  CAS  Google Scholar 

  • Roy RP, Saran S (1990) Sex expression in the Cucurbitaceae. In: Bates, DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, pp 251–268

    Google Scholar 

  • Rudich J (1990) Biochemical aspects of hormonal regulation of sex expression in Cucurbits. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell Univ Press, Ithaca, pp 269–280

    Google Scholar 

  • Rudich J, Halevy A, Kedar N (1969) Increase in femaleness of three cucurbits by treatment with ethrel, an ethylene releasing compound. Planta 86:69–76

    Article  CAS  Google Scholar 

  • Rudich J, Halevy AH, Kedar N (1972) Ethylene evolution from cucumber plants related to sex expression. Plant Physiol 49:998–999

    PubMed  CAS  Google Scholar 

  • Rudich J, Baker LR, Scott JW, Sell HM (1976) Phenotypic stability and ethylene evolution in androecious cucumber. J Am Soc Hort Sci 101:48–51

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Silva JA, da Costa TS, Lucchetta L, Marini LJ, Zanuzo MR, Nora L, Nora FR, Twyman RM, Rombaldi CV (2004) Characterization of ripening behavior in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene from apple. Postharvest Biol Technol 32:263–268

    Article  CAS  Google Scholar 

  • Sitrit Y, Riov J, Blumenfeld A (1988) Interference of phenolic compounds with 1-aminocyclopropane carboxylic acid assay. Plant Physiol 86:13–15

    PubMed  CAS  Google Scholar 

  • Stephenson AG, Devlin B, Horton JB (1988) The effects of seed number and prior fruit dominance on the pattern of fruit production in Cucurbita pepo (zucchini squash). Ann Bot 62:653–661

    Google Scholar 

  • Tanurdzic M, Banks JA (2004) Sex-determining mechanisms in land plants. Plant Cell 16:S61–S71

    Article  PubMed  CAS  Google Scholar 

  • Tolla GE, Peterson CE (1979) Comparison of gibberellin A4/A7 and silver nitrate for induction of staminate flowers in a gynoecious cucumber line. HortScience 14:542–544

    CAS  Google Scholar 

  • Trebitsh T, Rudich J, Riov J (1987) Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus). Plant Growth Regul 5:105–113

    Article  CAS  Google Scholar 

  • Trebitsh T, Staub JE, O’Neill SD (1997) Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987–995

    Article  PubMed  CAS  Google Scholar 

  • Williamson JD, Hirsh-Wyncott E, Larkins BA, Gelvin SB (1989) Differential accumulation of a transcript driven by the CaMV 35S promoter in transgenic tobacco. Plant Physiol 90:1570–1576

    Article  PubMed  CAS  Google Scholar 

  • Yadav RC, Saleh MT, Grumet R (1996) High frequency shoot regeneration from leaf explants of muskmelon. Plant Cell Tissue Organ Cult 45:207–214

    Article  CAS  Google Scholar 

  • Yamasaki S., Fujii N, Takahashi H (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol 41:608–616

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H (2001) The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:608–619

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi, H. (2003a) Characterization of ethylene effects on sex determination in cucumber plants. Sexual Plant Reprod 16:103–111

    Article  CAS  Google Scholar 

  • Yamasaki S, Fuuii N, Takahashi H (2003b) Photoperiodic regulation of CS-ACS2, CS-ACS4 and CS-ERS gene expression contributes to the femaleness of cucumber flowers through diurnal ethylene production under short day conditions. Plant Cell Env 26:537–546

    Article  CAS  Google Scholar 

  • Yin T, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot 82:1537–1546

    Article  CAS  Google Scholar 

  • Yu, JQ (1999) Parthenocarpy induced by N-(2-chloro-4pyridyl)-N′-phenylurea (CPPU) prevents flower abortion in Chinese white-flowered gourd (Lagenaria leucantha). Environ Exp Bot 42:121–128

    Article  Google Scholar 

  • Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Randy Woodson (Purdue University) for providing the petunia ACS cDNA, Drs Randy Beaudry and David Dilley for providing GC equipment and advice for the ethylene and ACC measurements, Dr. Kostas Viachonasios for assistance with the T1 northern blots, Mr Bill Chase and Gary Winchell for assistance with field plot preparation and maintenance, and Drs Randy Beaudry and Ning Jiang for helpful reviews of the manuscript. This project was in part supported by BARD grant IS-3139-99 and by a USDA-NNF fellowship to HAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Grumet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulou, E., Little, H.A., Hammar, S.A. et al. Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex Plant Reprod 18, 131–142 (2005). https://doi.org/10.1007/s00497-005-0006-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-005-0006-0

Keywords

Navigation