Skip to main content
Log in

Seasonal variability in the effect of temperature on key phenological stages of four table grapes cultivars

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Progressive warming of the grape growing regions has reduced the land capability for sustainable grapevine production and the geographical distribution of grapes. Bud burst, blooming, berry set, veraison, and harvest are the key phenological stages of grapevine, and are crucial for managing vineyard activities. The objective of this study was to evaluate the effect of seasonal temperature variability on the timing of key phenological stages of table grape cultivars in a new emerging viticulture region, i.e., the Pothwar region of Pakistan. Phenological stages of four table grape cultivars were recorded during two consecutive growing seasons at two locations. All phenological stages were attained earlier for the relatively warmer location, i.e., Chakwal. Similarly, the length of the growing season from bud burst to harvest was 15 to 21 days longer for the 2020 growing season than for the 2019 growing season, which corresponds to the inter-annual temperature variability. Moreover, the grapevine cultivars showed a distinct response for each growth phase; cv. Perlette matured earlier while cv. NARC Black was the last to ripen. Despite the large variability in the length of the active growing period from bud burst to harvest, accumulated growing degree days (GDD) varied only in a narrow range, i.e., 1510–1557 for cv. Perlette, 1641–1683 for cv. King’s Ruby, 1744–1770 for cv. Sugraone, and 1869–1906 for cv. NARC Black. This implies that seasonal temperature variability using GDD is a better indicator for the phenology of table grape cultivars compared to regular time. It is clear from the results from this study that the variation in phenological responses of table grape cultivars due to temperature differences necessitates genotype and site-specific vineyard management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The associated data is given here and in the supplemental material.

References

  • Acharya AS, Prakash A, Saxena P, Nigam A (2013) Sampling: why and how of it. India J Med Spec 4(2):330–333

    Article  Google Scholar 

  • Ahmed M, Ahmad S, Hayat R, Raza MA (2020) Application of generalized additive model for rainfall forecasting in rainfed Pothwar, Pakistan. In: Ahmed M (ed) Systems modeling. Springer, Singapore, pp 403–414

    Chapter  Google Scholar 

  • Anderson K, Aryal NR (2013) Which winegrape varieties are grown where? A global empirical picture (p 700). University of Adelaide Press

    Google Scholar 

  • Arnold CY (1959) The deamination and significance of the base temperature in a linear heat units system. Proc Am Soc Hort Sic 74:430–445

    Google Scholar 

  • Ausseil AGE, Law RM, Parker AK, Teixeira EI, Sood A (2021) Projected wine grape cultivar shifts due to climate change in New Zealand. Front Plant Sci 12:618039

    Article  Google Scholar 

  • Biasi R, Brunori E, Ferrara C, Salvati L (2019) Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L. The contribution of local knowledge. Plants 8:121

    Article  Google Scholar 

  • Bock A, Sparks T, Estrella N, Menzel A (2011) Changes in the phenology and composition of wine from Franconia, Germany. Climatol Res 50:69–81

    Article  Google Scholar 

  • Boselli M, Bahouaoui MA, Lachhab N, Sanzani SM, Ferrara G, Ippolito A (2019) Protein hydrolysates effects on grapevine (Vitis vinifera L., cv. Corvina) performance and water stress tolerance. Sci Hortic 258:108784

    Article  CAS  Google Scholar 

  • Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model. Editions Quae, Versailles, pp 1–298

  • Caesar J, Janes T (2018) Regional climate change over South Asia. Ecosystem Services for Well-Being. In: Nicholls RJ, Hutton CW, Neil Adger W, Hanson SE, Munsur RM, Salehin M (ed) Deltas: Integrated Assessment for Policy Analysis. Springer Nature, Switzerland, pp 3–27

  • Camargo-A HA, Salazar GMR, Zapata DM, Hoogenboom G (2016) Predicting the dormancy and bud break dates for grapevines. V Int Symp Models Plant Growth, Environ Control Farming Manag Protected Cultivation 1182:153–160

  • Cameron W, Petrie PR, Barlow EWR, Patrick CJ, Howell K, Fuentes S (2021) Is advancement of grapevine maturity explained by an increase in the rate of ripening or advancement of veraison? Aust J Grape Wine Res 27(3):334–347

    Article  CAS  Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Phil Trans R Soc London B: Biol Sci 365:3149–3160

    Article  Google Scholar 

  • Coombe BG (2004) Grapevine growth stages - The modified E-L system. In: Dry PR Coombe BG, eds. Viticulture 1 - Resources, 2 edn. Adelaide, Australia: Winetitles, pp 150–166. https://hdl.handle.net/2440/34606

  • Costa R, Fraga H, Fonseca A, Garcia de Cortazar-Atauri I, Val MC, Carlos C, Santos JA (2019) Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro wine region: Modelling and climate change projections. Agron 9:210

    Article  Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  Google Scholar 

  • De Resseguier L, Mary S, Le Roux R, Petitjean T, Quenol H, Van Leeuwen C (2020) Temperature variability at local scale in the Bordeaux area. Relations with environmental factors and impact on vine phenology. Front Plant Sci 11:515

    Article  Google Scholar 

  • Di Lorenzo C, Colombo F, Biella S, Orgiu F, Frigerio G, Regazzoni L, Restani P (2019) Phenolic profile and antioxidant activity of different grape (Vitis vinifera L.) varieties. BIO Web Conf 12:4005

    Article  Google Scholar 

  • Eichhorn KW, Lorenz DH (1977) Phenological development stages of the grape vine. Nachrichtenblatt Des Deutschen Pflanzenschutzdienstes 29(8):119–120

    Google Scholar 

  • Fernández-González M, Rodríguez-Rajo FJ, Escuredo O, Aira MJ (2013) Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia 29(4):523–535

    Article  Google Scholar 

  • Feroze MA, Anjum N, Manzoor A, Tariq M, Iqbal MS (2018) Performance of seven early maturing varieties of grapes (Vitis vinifera) under agro-climatic conditions of Pothwar, Pakistan. Pakistan J Biotechnol 15(4):921–926

    Google Scholar 

  • Ferrara G, Magarelli A, Palasciano M, Coletta A, Crupi P, Tarantino A, Mazzeo A (2022) Effects of different winter pruning times on table grape vines performance and starch reserves to face climate changes. Sci Hortic 305:111385

    Article  Google Scholar 

  • Figueiredo N, Carranca C, Trindade H, Pereira J, Goufo P, Coutinho J, De-Varennes A (2015) Elevated carbon dioxide and temperature effects on rice yield, leaf greenness, and phenological stages duration. Paddy Water Environ 13:313–324

    Article  Google Scholar 

  • Fraga H, Costa R, Moutinho-Pereira J, Correia CM, Dinis LT, Goncalves I, Silvestre J, Eiras-Dias J, Malheiro AC, Santos JA (2015) Modeling phenology, water status, and yield components of three Portuguese grapevines using the STICS crop model. Am J Enol Vitic 5344:1–35

    Google Scholar 

  • Garcia de Cortazar Atauri I (2006) Adaptation du modèle STICS à la vigne (Vitis vinifera L.): utilisation dans le cadre d'une étude d'impact du changement climatique à l'échelle de la France (Doctoral dissertation, École nationale supérieure agronomique (Montpellier)), pp 4–344

  • Gashu K, Sikron Persi N, Drori E, Harcavi E, Agam N, Bustan A, Fait A (2020) Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Front Plant Sci 11:588739

    Article  Google Scholar 

  • Gentilucci M, Burt P (2018) Using temperature to predict the end of flowering in the common grape (Vitis vinifera L.) in the Macerata wine region, Italy. Euro Mediterr J Environ Integr 3:38

    Article  Google Scholar 

  • Gravetter F, Wallnau L (2015) Statistics for the behavioral sciences, 10th edn. Cengage Learning. Boston, pp 3–32. http://ndl.ethernet.edu.et/bitstream/123456789/29095/1/Frederick%20J%20Gravetter_2017.pdf

  • Greer DH (2018) Modelling seasonal changes in the temperature-dependency of CO2 photosynthetic responses in two Vitis vinifera cultivars. Funct Plant Biol 45:315–327

    Article  CAS  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant, Cell Environ 35(6):1050–1064

    Article  Google Scholar 

  • Greer DH, Weedon MM (2013) The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front Plant Sci 4:491

    Article  Google Scholar 

  • Gris EF, Burin VM, Brighenti E, Vieira H, Bordignon-Luiz MT (2010) Phenology and ripening of Vitis vinifera L. grape varieties in Sao Joaquim, Southern Brazil: a new South American winegrowing region. Ciencia e Investigación Agraria 37(2):61–75

    Article  Google Scholar 

  • Gupta N, Pal RK, Kour A, Mishra SK (2020) Thermal unit requirement of grape (Vitis vinifera L.) varieties under southwestern Punjab conditions. J Agrometeorol 1 22(4):469–76

    Article  Google Scholar 

  • Gutiérrez JM, Jones RG, Narisma GT, Alves LM, Amjad M, Gorodetskaya IV, Grose M, Klutse NAB, Krakovska S, Li J, Martínez-Castro D, Mearns LO, Mernild SH, Ngo-Duc T, van den Hurk B, Yoon J-H (2021) Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR., Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds.)]. Cambridge University Press.In Press. Interactive Atlas. http://interactive-atlas.ipcc.ch/. Accessed on 12 Jan 2023

  • Hall A, Jones G (2010) Spatial analysis of climate in wine grape-growing regions in Australia. Aust J Grape Wine Res 16:389–404

    Article  Google Scholar 

  • Hanif M, Ali J (2014) Climate Scenarios 2011–2040: Districts Haripur, Swabi, Attock and Chakwal, Pakistan. Islamabad, Pakistan. Study conducted by Climate Change Centre, University of Agriculture. Intercooperation Pakistan, Peshawar, pp 15–27

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci 110(17): 6907-6912

  • Hoogenboom G (2000) Contribution of agrometeorology to the simulation of crop production and its applications. Agric Meteorol 103(1–2):137–157

    Article  Google Scholar 

  • Hopf A, Plotto A, Rizwan R, Zhang C, Boote KJ, Shelia V, Hoogenboom G (2022) Dynamic prediction of fruit quality traits as a function of environmental and genetic factors. Acta Hortic 1353:145–152

    Article  Google Scholar 

  • Imran M, Rauf A, Imran A, Nadeem M, Ahmad Z, Atif M, Awais M, Sami M, Fatima Z, Waqar BA (2017) Health benefits of grapes polyphenols. J Environ Agric Sci 10:40–51

    Google Scholar 

  • Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine:1–14. In: Macqueen RW, Meinert LD (eds) Fine wine and terroir – the geoscience perspective. Geoscience Canada, Geological Association of Canada, St. John’s, Newfoundland, Canada

  • Jones GV, White MA, Cooper OR, Storchman K (2005) Climate change and global wine quality. Clim Change 73:310–343

    Article  Google Scholar 

  • Koch B, Oehl F (2018) Climate Change Favors Grapevine Production in Temperate Zones. Agric Sci 9:247–263. https://doi.org/10.4236/as.2018.93019

    Article  CAS  Google Scholar 

  • Köse B (2014) Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey’s Black Sea Region. S Afr J Enol Vitic 35(1):90–102

    Google Scholar 

  • Kose B (2021) Evaluating of wine grapes phenology by using different climatic indices, grown in Black Sea region, Turkey. Erwerbs-Obstbau 63(1):77–88

    Article  CAS  Google Scholar 

  • Koyama R, Borges WFS, Colombo RC, Hussain I, Souza RTD, Roberto SR (2020) Phenology and yield of the hybrid seedless grape ‘BRS Melodia’ grown in an annual double cropping system in a subtropical area. Hortic 6(1):3

    Article  Google Scholar 

  • Leolini L, Bregaglio S, Moriondo M, Ramos MC, Bindi M, Ginaldi F (2018) A Model library to simulate grapevine growth and development: Software implementation, sensitivity analysis and field level application. Eur J Agron 99:92–105

    Article  Google Scholar 

  • Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang LJ (2011) Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLOS one 6(8):1–11

    Article  Google Scholar 

  • Maia M, Cavaco AR, Laureano G, Cunha J, Eiras-Dias J, Matos AR, Duarte B, Figueiredo A (2021) More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 10(10):2251

    Article  CAS  Google Scholar 

  • Malik S, Ahmad S, Sadiq A, Alam K, Wariss HM, Ahmad I, Mukhtar M (2015) A comparative ethno-botanical study of Cholistan (an arid area) and Pothwar (a semi-arid area) of Pakistan for traditional medicines. J Ethnobiol Ethnomedicine 11:1–20

    Article  Google Scholar 

  • Matese A, Di Gennaro SF (2015) Technology in precision viticulture: A state of the art review. Int J Wine Res 7:69–81

    Article  Google Scholar 

  • Menzel A (2003) Plant Phenological “Fingerprints”. In: Schwartz MD (ed.) Phenology: an integrative environmental science, 2nd edn. Springer Dordrecht Heidelberg, New York, and London, pp335-343. https://doi.org/10.1007/978-94-007-6925-0

  • Merrill NK, De Cortazar-Atauri IG, Parker AK, Walker MA, Wolkovich EM (2020) Exploring grapevine phenology and high temperatures response under controlled conditions. Front Environ Sci 8:224

    Article  Google Scholar 

  • Molitor D, Junk J, Evers D, Hoffmann L, Beyer M (2014) A high-resolution cumulative degree day-based model to simulate phenological development of grapevine. Am J Enol Vitic 65(1):72–80

    Article  Google Scholar 

  • Morales-Castilla I, De Cortazar-Atauri IG, Cook BI, Lacombe T, Parker A, Van Leeuwen C, Wolkovich EM (2020) Diversity buffers winegrowing regions from climate change losses. Proc Natl Acad Sci 117:2864-2869

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Great Britain, p 239

    Google Scholar 

  • Munoz-Robredo P, Robledo P, Manriquez D, Molina R, Defilippi BG (2011) Characterization of sugars and organic acids in commercial varieties of table grapes. Chil J Agric Res 71:452

    Article  Google Scholar 

  • OIV F (2016) FAO-OIV Focus Table and Dried Grapes. Volume I7042.FAO, 64. https://www.oiv.int/public/medias/4911/fao-oiv-grapes-report-flyer.pdf. Accessed on 10 Jan 2023

  • OIV. 2019 Statistical Report on World Viti viniculture; International Organisation of Vine and Wine: Paris, France. Accessed on 12 Jan 2023

  • Ortega-Farias S, Riveros-Burgos C (2019) Modeling phenology of four grapevine cultivars (Vitis vinifera L.) in Mediterranean climate conditions. Sci Hortic 250:38–44

    Article  Google Scholar 

  • OSU Extension Service (n.d.) Retrieved from: https://extension.oregonstate.edu/crop-production/wine-grapes/managing-grapevines-during-heat-spike. Accessed on 10 Jan 2023

  • Parker A, De Cortazar-Atauri IG, Chuine I, Barbeau G, Bois B, Boursiquot JM, Van Leeuwen C (2013) Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agric for Meteorol 180:249–264

    Article  Google Scholar 

  • Parker AK, De Cortazar-Atauri IG, Geny L, Spring JL, Destrac A, Schultz H, Van Leeuwen C (2020) Temperature-based grapevine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agric For Meteorol 285:107902

    Article  Google Scholar 

  • Parker AK, De Cortazar-Atauri IG, Van Leeuwen C, Chuine I (2011) General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust J Grape Wine Res 17:206–216

    Article  Google Scholar 

  • Parthasarathi T, Velu G, Jeyakumar P (2013) Impact of crop heat units on growth and developmental physiology of future crop production: A review. J Crop Sci Technol 2(1):2319–3395

    Google Scholar 

  • Pedro Junior MJ, Moura MF, Hernandes JL (2020) Phenology, thermal requirements and maturation of the SR 0.501-17 white wine grape hybrid cultivated in contrasting climatic conditions. Revista Ceres 67:247–255

    Article  Google Scholar 

  • Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Zhu X (2019) Plant phenology and global climate change: Current progresses and challenges. Glob Change Biol 25:1922–1940

    Article  Google Scholar 

  • Piña-Rey A, Ribeiro H, Fernández-González M, Abreu I, Rodríguez-Rajo FJ (2021) Phenological model to predict budbreak and flowering dates of four Vitis vinifera L. Cultivars cultivated in DO. Ribeiro (North-West Spain). Plants 10(3):502

    Article  Google Scholar 

  • Puga G, Anderson K, Jones G, Tchatoka FD, Umberger W (2022) A climatic classification of the world’s wine regions. OENO One 56(2):165–177

    Article  Google Scholar 

  • Rabino D, Biddoccu M, Bagagiolo G, Nigrelli G, Mercalli L, Cat Berro D, Cavallo E (2020) Effects of inter-annual climate variability on grape harvest timing in rainfed hilly vineyards of Piedmont (NW Italy). In EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10563. https://doi.org/10.5194/egusphere-egu2020-10563

  • Rafique R, Ahmad T, Ahmed M, Abbasi NA, Hoogenboom G (2021) Seasonal Variability in Temperature Affects Key Phenological Stages of Table Grapes Cultivars- a Case Study from Pothwar Region of Pakistan [Abstract]. ASA, CSSA, SSSA International Annual Meeting, Salt Lake City, UT. https://scisoc.confex.com/scisoc/2021am/meetingapp.cgi/Paper/134870. Accessed on 12 Feb 2023

  • Ramos MC (2017) Projection of phenology response to climate change in rainfed vineyards in north-east Spain. Agric for Meteorol 247:104–115

    Article  Google Scholar 

  • Ramos MC, Martínez de Toda F (2020) Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOCa (Spain). Eur J Agron 115:126014. https://doi.org/10.1016/j.eja.2020.126014

    Article  CAS  Google Scholar 

  • Rashid K, Rasul G (2011) Rainfall variability and maize production over the Potohar Plateau of Pakistan. Pak J Meteorol 8(15):63–74

    Google Scholar 

  • Rasul G, Mahmood A, Sadiq A, Khan SI (2012) Vulnerability of Indus delta to climate change in Pakistan. Pak J Meteorol 8:89–107

    Google Scholar 

  • Rathi P, Rajput CS (2014) Antioxidant potential of grapes (Vitis vinifera): A review. J Drug Deliv Ther 4(2):102–104

    Google Scholar 

  • Ripoche-wachter D, Patrice L (2017) “User Guide Software Maintainers.JavaStics 1.40 / STICS v8.50. User guide APP No. 99 17002600”, INRA France pp 85–88. https://w3.avignon.inra.fr/forge/projects/stics_main_projecv/files. Accessed 20 Aug 2020

  • Sadras VO, Montoro A, Moran MA, Aphalo PJ (2012) Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine. Agric for Meteorol 165:35–42

    Article  Google Scholar 

  • Sadras VO, Moran MA (2012) Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res 18:115–122. https://doi.org/10.1111/j.1755-0238.2012.00180.x

    Article  CAS  Google Scholar 

  • Sadras VO, Moran MA (2013) Nonlinear effects of elevated temperature on grapevine phenology. Agric for Meteorol 173:107–115

    Article  Google Scholar 

  • Sadras VO, Soar CJ (2009) Shiraz vines maintain yield in response to a 24 ˚C increase in maximum temperature using an open-top heating system at key phenostages. Eur J Agron 31(4):250–258

    Article  Google Scholar 

  • Santibáñez F, Sierra H, Santibáñez P (2014) Degree day model of table grape (Vitis vinifera L.) phenology in mediterranean temperate climates. Int J Environ Sci Technol 3:10–22

    Google Scholar 

  • Santos JA, Fraga H, Malheiro AC, Moutinho-Pereira J, Dinis LT, Correia C, Kartschall T (2020) A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl Sci 10:3092

    Article  CAS  Google Scholar 

  • Schrader JA, Cochran DR, Domoto PA, Nonnecke GR (2019) Phenology and winter hardiness of cold-climate grape cultivars and advanced selections in Iowa climate. Hort Technol 29(6):906–922

    Article  Google Scholar 

  • Sgubin G, Swingedouw D, Mignot J, Gambetta GA, Bois B, Loukos H, Noël T, Pieri P, García de Cortázar-Atauri I, Ollat N, van Leeuwen C (2023) Non-linear loss of suitable wine regions over Europe in response to increasing global warming. Glob Change Biol 29(3):808–826

    Article  CAS  Google Scholar 

  • Shaw TB (2017) Climate change and the evolution of the Ontario cool climate wine regions in Canada. J Wine Res 28(1):13–45

    Article  Google Scholar 

  • Sheikh IM, Pasha MK, Williams VS, Raza SQ (2007) Regional Studies of the Potwar Plateau Area, Northern Pakistan. Environ Geol Islamabad-Rawalpindi Area, Northern Pakistan 2078:1–32

    Google Scholar 

  • Tao F, Zhang Z, Shi W, Liu Y, Xiao D, Zhang S, Liu F (2013) Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite. Glob Change Biol 19(10):3200–3209

  • Torres R, Ferrara G, Soto F, López JA, Sanchez F, Mazzeo A, Pérez-Pastor A, Domingo R (2017) Effects of soil and climate in a table grape vineyard with cover crops. Irrigation management using sensors networks. Ciência Téc Vitiv 32(1):72–81

    Article  Google Scholar 

  • Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M (2020) Important flavonoids and their role as a therapeutic agent. Molecules 25(22):5243

    Article  CAS  Google Scholar 

  • USDA Foreign Agricultural Service (2022) Fresh apples, grapes, and pears: World markets and trade. Washington, DC. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/fruit.pdf. Accessed on 10 Feb 2023

  • Van Houten S, Munoz C, Bree L, Bergamin D, Sola C, Lijavetzky D (2020) Natural Genetic Variation for Grapevine Phenology as a Tool for Climate Change Adaptation. Appl Sci 10:5573

    Article  Google Scholar 

  • Van Leeuwen C, Garnier C, Agut C, Baculat B, Barbeau G, Besnard E, Bois B, Boursiquot JM, Chuine I, Dessup T, Dufourcq T, Garcia-Cortazar I, Marguerit E, Monamy C, Koundouras S, Payan J-C, Parker A, Renouf V, Rodriguez-Lovelle B, Roby J-P, Tonietto J, Trambouze W (2008) Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate. VIIème Congrès International des Terroirs Viticoles-Comptes rendus-Volume 1.2008; 7. Congrès International des Terroirs Viticoles, Nyon, Switzerland. Hal-02758537 https://hal.inrae.fr/hal-02758537

  • Venios X, Korkas E, Nisiotou A, Banilas G (2020) Grapevine Responses to Heat Stress and Global Warming. Plants 9(12):1754

    Article  Google Scholar 

  • Verdugo-Vasquez N, Acevedo Opazo C, Valdes Gomez H, Araya-Alman M, Ingram B, Garcia de Cortazar-Atauri I, Tisseyre B (2017) Model development to predict phenological scales of table grapes (cvs. Thompson, Crimson and Superior Seedless and Red Globe) using growing degree days. Oeno One 51(3):277–288

    Google Scholar 

  • Wang X, Li H, de Cortázar Atauri IG (2020) Assessing grapevine phenological models under Chinese climatic conditions. OENO One 54(3):637–656

    Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of wine grapes in Australia. Aust J Grape Wine Res 13:165–175

    Article  Google Scholar 

  • Wilczek AM, Burghardt LT, Cobb AR, Cooper MD, Welch SM, Schmitt J (2010) Genetic and physiological bases for phenological responses to current and predicted climates. Phil Trans R Soc London, Biol Sci 365:3129–3147

    Article  CAS  Google Scholar 

  • Wolkovich EM, Burge DO, Walker MA, Nicholas KA (2017) Phenological diversity provides opportunities for climate change adaptation in winegrapes. J Ecol 105:905–912

    Article  Google Scholar 

  • Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11(2):622–646

    Article  CAS  Google Scholar 

  • Zapata D, Salazar-Gutierrez M, Chaves B, Keller M, Hoogenboom G (2017) Predicting key phenological stages for 17 grapevine cultivars (Vitis vinifera L.). Am J Enol Vitic 68:60–72

    Article  Google Scholar 

  • Zapata D, Salazar-Gutierrez M, Chaves B, Keller M, Hoogenboom G (2015) Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars. Int J Biometeorol 59(12):1771–1781

    Article  CAS  Google Scholar 

  • Zhou G, Wang Q (2018) A new nonlinear method for calculating growing degree days. Sci Rep 8:1–14

    Google Scholar 

Download references

Acknowledgements

The first author would like to recognize the Higher Education Commission (HEC) of Pakistan for awarding the HEC indigenous PhD fellowship (2AG4-029) and IRSIP (46-Agri 11) award to support his fellowship at the University of Florida, USA. The authors also acknowledge the Barani Agriculture Research Institute Chakwal and Raja Yasir Grapes Farms Barakahu, Islamabad, for allowing the use of their vineyards for experimentation, and the Soil & Water Conservation Research Institute Chakwal, National Agriculture Research Centre Islamabad, and Pakistan Meteorological Department Pakistan for providing access to weather data. Finally, the first author also acknowledges the Agriculture Department, Govt. of Punjab for granting his study leave.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the conceptualization of this study.

Corresponding author

Correspondence to Rizwan Rafique.

Ethics declarations

Ethical issues

No ethical issues are involved with this publication.

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5565 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, R., Ahmad, T., Ahmed, M. et al. Seasonal variability in the effect of temperature on key phenological stages of four table grapes cultivars. Int J Biometeorol 67, 745–759 (2023). https://doi.org/10.1007/s00484-023-02452-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-023-02452-0

Keywords

Navigation