Skip to main content

Advertisement

Log in

Climate model for seasonal variation in Bemisia tabaci using CLIMEX in tomato crops

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The whitefly, Bemisia tabaci, is considered one of the most important pests for tomato Solanum lycopersicum. The population density of this pest varies throughout the year in response to seasonal variation. Studies of seasonality are important to understand the ecological dynamics and insect population in crops and help to identify which seasons have the best climatic conditions for the growth and development of this insect species. In this research, we used CLIMEX to estimate the seasonal abundance of a species in relation to climate over time and species geographical distribution. Therefore, this research is designed to infer the mechanisms affecting population processes, rather than simply provide an empirical description of field observations based on matching patterns of meteorological data. In this research, we identified monthly suitability for Bemisia tabaci, with the climate models, for 12 commercial tomato crop locations through CLIMEX (version 4.0). We observed that B. tabaci displays seasonality with increased abundance in tomato crops during March, April, May, June, October and November (first year) and during March, April, May, September and October (second year) in all monitored areas. During this period, our model demonstrated a strong agreement between B. tabaci density and CLIMEX weekly growth index (GIw), which indicates significant reliability of our model results. Our results may be useful to design sampling and control strategies, in periods and locations when there is high suitability for B. tabaci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albergaria NM, Cividanes FJ (2002) Thermal requirements of Bemisia tabaci (Genn.) B-biotype (Hemiptera: Aleyrodidae). Neotrop Entomol 31(3):359–363

    Article  Google Scholar 

  • Alicai T (1999) Seasonal changes in whitefly numbers and their influence on incidence of sweetpotato chlorotic stunt virus and sweetpotato virus disease in sweetpotato in Uganda. Int. J. Pest Manag. 45(1):51–55

  • Bacci L, Picanço MC, Moura MF, Della Lucia TM, Semeão AA (2006) Sampling plan for Diaphania spp.(Lepidoptera: Pyralidae) and for hymenopteran parasitoids on cucumber. J Econ Entomol 99(6):2177–2184

    Article  Google Scholar 

  • Campos WG, Schoereder JH, DeSouza OF (2006) Seasonality in neotropical populations of Plutella xylostella (Lepidoptera): resource availability and migration. Popul Ecol 48(2):151–158

    Article  Google Scholar 

  • da Silva RS, Kumar L, Shabani F, da Silva EM, da Silva Galdino TV, Picanço MC (2017) Spatio-temporal dynamic climate model for Neoleucinodes elegantalis using CLIMEX. Int J Biometeorol 61(5):785–795

    Article  Google Scholar 

  • De Villiers M, Hattingh V, Kriticos D (2013) Combining field phenological observations with distribution data to model the potential distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae). Bull Entomol Res 103(1):60–73

    Article  Google Scholar 

  • De Villiers M, Hattingh V, Kriticos DJ, Brunel S, Vayssières J-F, Sinzogan A, Billah M, Mohamed S, Mwatawala M, Abdelgader H (2016) The potential distribution of Bactrocera dorsalis: considering phenology and irrigation patterns. Bull Entomol Res 106(1):19–33

    Article  Google Scholar 

  • Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83(3):197–215

    Article  Google Scholar 

  • Elfekih S, Tay WT, Gordon K, Court LN, De Barro PJ (2018) Standardized molecular diagnostic tool for the identification of cryptic species within the Bemisia tabaci complex. Pest Manag Sci 74(1):170–173

    Article  CAS  Google Scholar 

  • Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J Am Soc Hortic Sci 123(6):1004–1007

    Article  Google Scholar 

  • Gerling D (1986) Natural enemies of Bemisia tabaci, biological characteristics and potential as biological control agents: a review. Agric Ecosyst Environ 17(1):99–110. https://doi.org/10.1016/0167-8809(86)90031-9

    Article  Google Scholar 

  • Gilioli G, Pasquali S, Parisi S, Winter S (2014) Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario. Pest Manag Sci 70(10):1611–1623

    Article  CAS  Google Scholar 

  • Gontijo P, Picanço M, Pereira E, Martins J, Chediak M, Guedes R (2013) Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Ann Appl Biol 162(1):50–59

    Article  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury F (2010) The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84(18):9310–9317

    Article  CAS  Google Scholar 

  • Grávalos C, Fernández E, Belando A, Moreno I, Ros C, Bielza P (2015) Cross-resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Manag Sci 71(7):1030–1036

    Article  CAS  Google Scholar 

  • Gusmão M, Picanço M, Guedes R, Galvan T, Pereira E (2006) Economic injury level and sequential sampling plan for Bemisia tabaci in outdoor tomato. J Appl Entomol 130(3):160–166

    Article  Google Scholar 

  • Gusmao MR (2000) Avaliação de vetores de viroses, predadores e parasitóides e plano de amostragem para mosca-branca em tomateiro. Universidade Federal de Viçosa

  • Gusmão MR, Picanço MC, Zanuncio JC, Silva DJH, Barrigossi JAF (2005) Standardised sampling plan for Bemisia tabaci (Homoptera: Aleyrodidae) in outdoor tomatoes. Sci Hortic 103(4):403–412. https://doi.org/10.1016/j.scienta.2004.04.005

    Article  Google Scholar 

  • Han P, Desneux N, Michel T, Le Bot J, Seassau A, Wajnberg E, Amiens-Desneux E, Lavoir A-V (2016) Does plant cultivar difference modify the bottom-up effects of resource limitation on plant-insect herbivore interactions? J Chem Ecol 42(12):1293–1303

    Article  CAS  Google Scholar 

  • Harris I, Jones P (2017) CRU TS4. 00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2015). Centre for Environmental Data Analysis 25

  • Heuvelink E (2005) Tomatoes, vol 13. CABI,

  • Hirano K, Budiyanto E, Winarni S (1993) Biological characteristics and forecasting outbreaks of the whitefly, Bemisia tabaci, a vector of virus diseases in soybean fields. ASPAC Food & Fertilizer Technology Center

  • Horowitz AR, Ishaaya I (2014) Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Manag Sci 70(10):1568–1572

    Article  CAS  Google Scholar 

  • Imenes S, Campos T, Takematsu A, Bergmann E, Silva M (1992) Efeito do manejo integrado na população de pragas e inimigos naturais na produção de tomate estaqueado. Arq Inst Biol 59:1–7

    Google Scholar 

  • Jafarbeigi F (2014) Sublethal effects of some botanical and chemical insecticides on the cotton whitefly, Bemisia tabaci (Hem: Aleyrodidae). Arthropods 3(3):127

    Google Scholar 

  • Jones JB Jr (2007) Tomato plant culture: in the field, greenhouse, and home garden. CRC

  • Kriticos DJ, Maywald GF, Yonow T, Zurcher EJ, Herrmann NI, Sutherst R (2015) Exploring the effects of climate on plants, animals and diseases. CLIMEX Version 4:184

  • Lapidot M, Friedmann M, Lachman O, Yehezkel A, Nahon S, Cohen S, Pilowsky M (1997) Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis 81(12):1425–1428

    Article  Google Scholar 

  • Leite GLD, Picanço M, Guedes RNC, Ecole CC (2006) Factors affecting the attack rate of Bemisia tabaci on cucumber. Pesq Agrop Brasileira 41(8):1241–1245

    Article  Google Scholar 

  • Lima CH, Sarmento RA, Pereira PS, Galdino TV, Santos FA, Silva J, Picanço MC (2017) Feasible sampling plan for Bemisia tabaci control decision-making in watermelon fields. Pest Manag Sci 73:2345–2352

    Article  CAS  Google Scholar 

  • Luan J-B, Chen W, Hasegawa DK, Simmons AM, Wintermantel WM, Ling K-S, Fei Z, Liu S-S, Douglas AE (2015) Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol 7(9):2635–2647

    Article  CAS  Google Scholar 

  • McKenzie CL, Kumar V, Palmer CL, Oetting RD, Osborne LS (2014) Chemical class rotations for control of Bemisia tabaci (Hemiptera: Aleyrodidae) on poinsettia and their effect on cryptic species population composition. Pest Manag Sci 70(10):1573–1587

    Article  CAS  Google Scholar 

  • Moraes CP, Foerster LA (2015) Thermal requirements, fertility, and number of generations of Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae). Neotrop Entomol:1–7 GBIF.org (2nd May 2017) GBIF Occurrence Download https://doi.org/10.15468/dl.mwb31k

  • Morales FJ, Jones PG (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res 100(1):57–65 https://doi.org/10.1016/j.virusres.2003.12.014

    Article  CAS  Google Scholar 

  • Munyuli T, Kalimba Y, Mulangane EK, Mukadi TT, Ilunga MT, Mukendi RT (2017) Interaction of the fluctuation of the population density of sweet potato pests with changes in farming practices, climate and physical environments: a 11-year preliminary observation from South-Kivu Province, Eastern DRCongo. Open Agriculture 2(1):495–530

    Google Scholar 

  • Naranjo SE, Castle SJ, De Barro PJ, Liu S-S (2009) Population dynamics, demography, dispersal and spread of Bemisia tabaci. In: Bemisia: bionomics and management of a global pest. Springer, pp 185–226

  • Naranjo SE, Ellsworth PC (2005) Mortality dynamics and population regulation in Bemisia tabaci. Entomol Exp Appl 116(2):93–108

    Article  Google Scholar 

  • Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248

    Article  CAS  Google Scholar 

  • Ning W, Shi X, Liu B, Pan H, Wei W, Zeng Y, Sun X, Xie W, Wang S, Wu Q (2015) Transmission of tomato yellow leaf curl virus by Bemisia tabaci as affected by whitefly sex and biotype. Sci Rep 5:10744

    Article  Google Scholar 

  • Oliveira C, Auad A, Mendes S, Frizzas M (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54

    Article  Google Scholar 

  • Papayiannis LC, Iacovides TA, Katis N, Brown J (2010) Differentiation of tomato yellow leaf curl virus and tomato yellow leaf curl Sardinia virus using real-time TaqMan® PCR. J Virol Methods 165(2):238–245

    Article  CAS  Google Scholar 

  • Pedigo LP, Rice ME (2014) Entomology and pest management. Waveland

  • Pereira E, Picanço M, Bacci L, Crespo A, Guedes R (2007) Seasonal mortality factors of the coffee leafminer, Leucoptera coffeella. Bull Entomol Res 97(4):421–432

    Article  CAS  Google Scholar 

  • Queiroz PR, Lima LH, Sujii ER, Monnerat RG (2017) Description of the molecular profiles of Bemisia tabaci (Hemiptera: Aleyrodidae) in different crops and locations in Brazil. Journal of Entomology and Nematology 9(5):36–45

  • Queiroz PR, Martins ES, Klautau N, Lima L, Praça L, Monnerat RG (2016) Identification of the B, Q, and native Brazilian biotypes of the Bemisia tabaci species complex using scar markers. Pesq Agrop Brasileira 51(5):555–562

    Article  Google Scholar 

  • Ramos RS, Kumar L, Shabani F, Picanço MC (2018) Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS One 13(6):e0198925. https://doi.org/10.1371/journal.pone.0198925

    Article  CAS  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang X, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2 (2):90–104

  • Simmons AM, Harrison HF, LING KS (2008) Forty-nine new host plant species for Bemisia tabaci (Hemiptera: Aleyrodidae). Entomol Sci 11(4):385–390

    Article  Google Scholar 

  • Stansly PA, McKenzie CL (2008) Fourth international Bemisia workshop international whitefly genomics workshop December 3–8, 2006, Duck Key, Florida, USA. J Insect Sci 8(4):1–54

    Article  Google Scholar 

  • Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J, Zalucki MP (2011) Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip Rev Clim Chang 2(2):220–237

    Article  Google Scholar 

  • Togni PH, Laumann RA, Medeiros MA, Sujii ER (2010) Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol Exp Appl 136(2):164–173

    Article  Google Scholar 

  • Tomar S, Malik SSK (2017) Life parameters of whitefly (Bemisia tabaci, Genn.) on different host plants. Indian J Sci Res 16(1):34–37

    Google Scholar 

  • Varella AC, Menezes-Netto AC, de Souza Alonso JD, Caixeta DF, Peterson RK, Fernandes OA (2015) Mortality dynamics of Spodoptera frugiperda (Lepidoptera: Noctuidae) immatures in maize. PLoS One 10(6):e0130437

    Article  CAS  Google Scholar 

  • Xie W, Q-s M, Q-j W, S-l W, Yang X, N-n Y, Li R-m, X-g J, H-p P, B-m L (2012) Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance. PLoS One 7(4):e35181

    Article  CAS  Google Scholar 

  • Zidon R, Tsueda H, Morin E, Morin S (2016) Projecting pest population dynamics under global warming: the combined effect of inter-and intra-annual variations. Ecol Appl 26(4):1198–1210

    Article  Google Scholar 

Download references

Acknowledgements

The simulations were carried out using the computational facilities at UNE. Mr. Phillip John Villani (B.A. from the University of Melbourne, Australia) revised and corrected the English language used in this manuscript.

Funding

This research was supported by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)) and financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) of Brazil (Finance Code 001), the Minas Gerais State Foundation for Research Aid (FAPEMIG) and the School of Environmental and Rural Science of the University of New England (UNE), Armidale, Australia.

Author information

Authors and Affiliations

Authors

Contributions

RSR, RSS and MCP conceived of and designed the research. TAA, RSS and RSR contributed to conducting the experiments and acquiring the data. RSR analysed the data and wrote the manuscript with support from LK. LK and FS made the critical revisions (providing language help and writing assistance). LK and MCP made the critical revisions and approved the final version. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Rodrigo Soares Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, R.S., Kumar, L., Shabani, F. et al. Climate model for seasonal variation in Bemisia tabaci using CLIMEX in tomato crops. Int J Biometeorol 63, 281–291 (2019). https://doi.org/10.1007/s00484-018-01661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-018-01661-2

Keywords

Navigation