Skip to main content

Advertisement

Log in

Regional spatio-temporal forecasting of particulate matter using autoencoder based generative adversarial network

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Accurate forecasting of air pollutant PM2.5(particulate matter with diameter less than 2.5 µm) is beneficial to society. However, the non-linear spatio-temporal correlations, multi-feasible forecast values and incomplete training data due to stochasticity make it challenging for discriminative deep learning approaches to forecasting PM2.5 data. In this paper, a generative modeling approach is proposed to overcome the challenges in forecasting PM2.5 data by considering it as an ill-posed inverse problem. To strengthen its applicability, the proposed approach is theoretically validated. Furthermore, based on the proposed generative modeling, an Autoencoder-based generative adversarial network (GAN) named Air-GAN is developed. Air-GAN combines a convolutional neural network- long short-term memory (CNN-LSTM) based Encoder with a conditional Wasserstein GAN (WGAN) to capture non-linear correlations in the data distribution via inverse mapping from the forecast distribution. The condition vector to conditional WGAN is the novelty in Air-GAN, which employs this inverse learning and allows the WGAN’s Generator to generate accurate forecast estimates from noise distribution. The condition vector is composed of two elements: (1) the category label of the best correlated meteorological parameter with the PM2.5 data, assigned using an efficient classifier and (2) the output of the CNN-LSTM-based Encoder which is the latent representation of the forecast. The extensive evaluation of Air-GAN for predicting the real-time PM2.5 data of Delhi demonstrates its superior performance with an average inference error of 5.3 µg/m3, which achieves 31.7% improvement over the baseline approaches. The improved performance of Air-GAN demonstrates its efficiency to forecast stochastic PM2.5 data by generalizing to out-of-distribution data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability and material

Open-source data.

Code availability

Custom code.

References

  • Abinaya S, Devi MKK (2021) Enhancing top-N recommendation using stacked autoencoder in context-aware recommender system. Neural Process Lett 53(3):1865–1888. https://doi.org/10.1007/s11063-021-10475-0

    Article  Google Scholar 

  • Abirami S, Chitra P (2021) Regional air quality forecasting using spatiotemporal deep learning. J Clean Prod 283:125341

    Article  Google Scholar 

  • Abirami S, Chitra P, Madhumitha R, Kesavan SR (2020) Hybrid spatio-temporal deep learning framework for particulate matter(PM2.5) concentration forecasting. In: 2020 International conference on innovative trends in information technology (ICITIIT), pp. 1–6

  • Ai Y, Li Z, Gan M et al (2019) A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural Comput Appl 31:1665–1677. https://doi.org/10.1007/s00521-018-3470-9

    Article  Google Scholar 

  • Al-Hemoud A, Gasana J, Al-Dabbous A et al (2019) Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait. Environ Res 179:108730

    Article  CAS  Google Scholar 

  • Albawi S, Mohammed TA, Al-Zawi S (2017) Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET). IEEE, pp 1–6

  • Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR, pp 214–223

  • Beig G, Ghude SD, Deshpande A (2010) Scientific evaluation of air quality standards and defining air quality index for India. CITESEER

  • Box GEP, Jenkins GM (1968) Some recent advances in forecasting and control. J R Stat Soc Ser C Applied Stat 17:91–109. https://doi.org/10.2307/2985674

    Article  Google Scholar 

  • Brauer M (2016) The global burden of disease from air pollution. In: 2016 AAAS annual meeting (February 11–15, 2016). AAAS

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Chaudhary V, Deshbhratar A, Kumar V, Paul D (2018) Time series based LSTM model to predict air pollutant’s concentration for prominent cities in India. UDM, Aug

  • Chen Y, Wang Y, Kirschen D, Zhang B (2018) Model-free renewable scenario generation using generative adversarial networks. IEEE Trans Power Syst 33:3265–3275. https://doi.org/10.1109/TPWRS.2018.2794541

    Article  Google Scholar 

  • Cheng M, Fang F, Pain CC, Navon IM (2020) Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network. Comput Methods Appl Mech Eng 365:113000

    Article  Google Scholar 

  • Chitra P, Abirami S (2019) Leveraging fog computing and deep learning for building a secure individual health-based decision support system to evade air pollution. In: Global IGI (ed) Security, privacy, and forensics issues in big data. IGI Global, Amsterdam, pp 380–406

    Google Scholar 

  • Chitra P, Abirami S (2019) Smart pollution alert system using machine learning. Integrating the internet of things into software engineering practices. IGI Global, Amsterdam, pp 219–235

    Chapter  Google Scholar 

  • Donahue J, Krähenbühl P, Darrell T (2016) Adversarial feature learning. arXiv Prepr https://arxiv.org/abs/1605.09782

  • Du S, Li T, Yang Y, Horng S-J (2019) Deep air quality forecasting using hybrid deep learning framework. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/tkde.2019.2954510

    Article  Google Scholar 

  • Express Web Desk (2016) Diwali effect: pollution worsens, particulate matter soars in Delhi. In: The Indian Express. http://indianexpress.com/article/india/india-news-india/post-diwali-pm-shoots-up-10-times-more-than-the-safe-limit-3730200/

  • García Nieto PJ, Combarro EF, del Coz Díaz JJ, Montañés E (2013) A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study. Appl Math Comput 219:8923–8937. https://doi.org/10.1016/j.amc.2013.03.018

    Article  Google Scholar 

  • Ghaemi Z, Alimohammadi A, Farnaghi M (2018) LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran. Environ Monit Assess. https://doi.org/10.1007/s10661-018-6659-6

    Article  Google Scholar 

  • Goodfellow IJ, Pouget-Abadie J, Mirza M, et al (2014) Generative adversarial networks. arXiv Prepr https://arxiv.org/abs/1406.2661

  • Gu K, Qiao J, Lin W (2018) Recurrent air quality predictor based on meteorology-and pollution-related factors. IEEE Trans Ind Inform 14:3946–3955

    Article  Google Scholar 

  • Gupta P, Christopher SA (2009) Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J Geophys Res Atmos. https://doi.org/10.1029/2008JD011496

    Article  Google Scholar 

  • Huang CJ, Kuo PH (2018) A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities. Sensors (Switzerland) 18:2220. https://doi.org/10.3390/s18072220

    Article  Google Scholar 

  • Huitema B, Laraway S (2006) Autocorrelation

  • Jaya IGNM, Andriyana Y, Tantular B et al (2019) Spatiotemporal dengue disease clustering by means local spatiotemporal Moran’s index. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/621/1/012017

    Article  Google Scholar 

  • Jiang C, Mao Y, Chai Y, Yu M (2020) Day-ahead renewable scenario forecasts based on generative adversarial networks

  • Kirch W (2008) Pearson’s correlation coefficient. Encyclopedia of public health. Springer, Netherlands, Dordrecht, pp 1090–1091

    Chapter  Google Scholar 

  • Kumar U, Jain VK (2010) ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch Environ Res Risk Assess 24:751–760. https://doi.org/10.1007/s00477-009-0361-8

    Article  Google Scholar 

  • Le VD, Cha SK (2018) Real-time air pollution prediction model based on spatiotemporal big data

  • Lee S, Shin J (2019) Hybrid model of convolutional LSTM and CNN to predict particulate matter. Int J Inf Electron Eng 9:34–38. https://doi.org/10.18178/ijiee.2019.9.1.701

    Article  Google Scholar 

  • Li C, Hsu NC, Tsay S-C (2011) A study on the potential applications of satellite data in air quality monitoring and forecasting. Atmos Environ 45:3663–3675. https://doi.org/10.1016/j.atmosenv.2011.04.032

    Article  CAS  Google Scholar 

  • Liang D, Kumar N (2013) Time-space Kriging to address the spatiotemporal misalignment in the large datasets. Atmos Environ 72:60–69. https://doi.org/10.1016/j.atmosenv.2013.02.034

    Article  CAS  Google Scholar 

  • Ma X, Dai Z, He Z et al (2017) Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17:818

    Article  Google Scholar 

  • Mahalingam U, Elangovan K, Dobhal H, et al (2019) A machine learning model for air quality prediction for smart cities. In: 2019 International conference on wireless communications signal processing and networking (WiSPNET). pp 452–457

  • Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv Prepr https://arxiv.org/abs/1411.1784

  • Mondini A, Chiaravalloti-Neto F (2008) Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Sci Total Environ 393:241–248. https://doi.org/10.1016/j.scitotenv.2008.01.010

    Article  CAS  Google Scholar 

  • Niska H, Hiltunen T, Karppinen A et al (2004) Evolving the neural network model for forecasting air pollution time series. Eng Appl Artif Intell 17:159–167

    Article  Google Scholar 

  • Pandhe N, Rada B, Quinn S (2018) Generative spatiotemporal modeling of neutrophil behavior. In: Proc—Int symp biomed imaging 2018: 969–972. https://doi.org/10.1109/ISBI.2018.8363732

  • Panwar S, Rad P, Jung T-P, Huang Y (2019) Modeling EEG data distribution with a Wasserstein generative adversarial network to predict RSVP events

  • Pearce JL, Rathbun SL, Aguilar-Villalobos M, Naeher LP (2009) Characterizing the spatiotemporal variability of PM2.5 in Cusco, Peru using kriging with external drift. Atmos Environ 43:2060–2069. https://doi.org/10.1016/j.atmosenv.2008.10.060

    Article  CAS  Google Scholar 

  • Qin S, Liu F, Wang C et al (2015) Spatial-temporal analysis and projection of extreme particulate matter (PM10 and PM2.5) levels using association rules: a case study of the Jing-Jin-Ji region, China. Atmos Environ 120:339–350. https://doi.org/10.1016/j.atmosenv.2015.09.006

    Article  CAS  Google Scholar 

  • Rokach L, Maimon O (2005) Clustering methods. Data mining and knowledge discovery handbook. Springer, New York, pp 321–352

    Chapter  Google Scholar 

  • Shad R, Mesgari MS, Shad A (2009) Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput Environ Urban Syst 33:472–481

    Article  Google Scholar 

  • Sharma M, Jain S, Mittal S, Sheikh TH (2021) Forecasting and prediction of air pollutants concentrates using machine learning techniques the case of India. IOP Conf Series: Mater Sci Eng 1022:12123

    Article  Google Scholar 

  • Sivasundaram S, Pandian C (2021) Performance analysis of classification and segmentation of cysts in panoramic dental images using convolutional neural network architecture. Int J Imaging Syst Technol 31(4):2214–2225. https://doi.org/10.1002/ima.22625

    Article  Google Scholar 

  • Tan Z, Gao M, Li X, Jiang L (2021) A flexible reference-insensitive spatiotemporal fusion model for remote sensing images using conditional generative adversarial network. IEEE Trans Geosci Remote Sens 60:1–13

    Google Scholar 

  • Tieu N-DT, Nguyen HH, Nguyen-Son H-Q et al (2019) Spatio-temporal generative adversarial network for gait anonymization. J Inf Secur Appl 46:307–319

    Google Scholar 

  • WHO News Release (2018) 9 out of 10 people worldwide breathe polluted air, but more countries are taking action. In: World Heal. Organ. https://www.who.int/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action

  • Yu H, Chen X, Li Z et al (2019) Taxi-based mobility demand formulation and prediction using conditional generative adversarial network-driven learning approaches. IEEE Trans Intell Transp Syst 20:3888–3899. https://doi.org/10.1109/TITS.2019.2923964

    Article  Google Scholar 

  • Yu H, Li Z, Zhang G et al (2020) Extracting and predicting taxi hotspots in spatiotemporal dimensions using conditional generative adversarial neural networks. IEEE Trans Veh Technol 69:3680–3692. https://doi.org/10.1109/TVT.2020.2978450

    Article  Google Scholar 

  • Zhang H, Song Y, Han C, Zhang L (2020) Remote sensing image spatiotemporal fusion using a generative adversarial network. IEEE Trans Geosci Remote Sens 59:4273–4286

    Article  Google Scholar 

  • Zhang Y (2012) Support vector machine classification algorithm and its application. International conference on information computing and applications. Springer, Berlin, pp 179–186

    Chapter  Google Scholar 

  • Zhang Y, Wang S, Chen B et al (2019) TrafficGAN: network-scale deep traffic prediction with generative adversarial nets. IEEE Trans Intell Transp Syst 230:219–230. https://doi.org/10.1109/tits.2019.2955794

    Article  Google Scholar 

  • Zhu D, Cai C, Yang T, Zhou X (2018) A machine learning approach for air quality prediction: model regularization and optimization. Big Data Cogn Comput 2:5. https://doi.org/10.3390/bdcc2010005

    Article  Google Scholar 

  • Zhu Q, Chen J, Shi D et al (2020) Learning temporal and spatial correlations jointly: a unified framework for wind speed prediction. IEEE Trans Sustain Energy 11:509–523. https://doi.org/10.1109/TSTE.2019.2897136

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the All-India Council for Technical Education (AICTE)-NDF Scheme for providing a research fellowship to support this research.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SA Conceptualization, methodology, software, original draft preparation; PC: supervision, writing- reviewing and editing. Acknowledgements- Authors are thankful to the All-India Council for Technical Education (AICTE)-NDF Scheme for providing a research fellowship to support this research.

Corresponding authors

Correspondence to S. Abirami or P. Chitra.

Ethics declarations

Conflict of interest

None.

Consent to participate

Yes.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abirami, S., Chitra, P. Regional spatio-temporal forecasting of particulate matter using autoencoder based generative adversarial network. Stoch Environ Res Risk Assess 36, 1255–1276 (2022). https://doi.org/10.1007/s00477-021-02153-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-021-02153-3

Keywords

Navigation