Skip to main content

Abstract

This chapter presents a tutorial overview of the main clustering methods used in Data Mining. The goal is to provide a self-contained review of the concepts and the mathematics underlying clustering techniques. The chapter begins by providing measures and criteria that are used for determining whether two objects are similar or dissimilar. Then the clustering methods are presented, divided into: hierarchical, partitioning, density-based, model-based, grid-based, and soft-computing methods. Following the methods, the challenges of performing clustering in large data sets are discussed. Finally, the chapter presents how to determine the number of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Sultan K. S., A tabu search approach to the clustering problem, Pattern Recognition, 28:1443–1451, 1995.

    Article  Google Scholar 

  • Al-Sultan K. S., Khan M. M.: Computational experience on four algorithms for the hard clustering problem. Pattern Recognition Letters 17(3): 295–308, 1996.

    Article  Google Scholar 

  • Banfield J. D. and Raftery A. E.. Model-based Gaussian and non-Gaussian clustering. Biometrics, 49:803–821, 1993.

    MathSciNet  MATH  Google Scholar 

  • Bentley J. L. and Friedman J. H., Fast algorithms for constructing minimal spanning trees in coordinate spaces. IEEE Transactions on Computers, C-27(2):97–105, February 1978. 275

    Google Scholar 

  • Bonner, R., On Some Clustering Techniques. IBM journal of research and development, 8:22–32, 1964.

    Article  MATH  Google Scholar 

  • Can F., Incremental clustering for dynamic information processing, in ACM Transactions on Information Systems, no. 11, pp 143–164, 1993.

    Article  Google Scholar 

  • Cheeseman P., Stutz J.: Bayesian Classification (AutoClass): Theory and Results. Advances in Knowledge Discovery and Data Mining 1996: 153–180

    Google Scholar 

  • Dhillon I. and Modha D., Concept Decomposition for Large Sparse Text Data Using Clustering. Machine Learning. 42, pp.143–175. (2001).

    Article  MATH  Google Scholar 

  • Dempster A.P., Laird N.M., and Rubin D.B., Maximum likelihood from incomplete data using the EM algorithm. Journal of the Royal Statistical Society, 39(B), 1977.

    Google Scholar 

  • Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley, New York, 2001.

    Google Scholar 

  • Ester M., Kriegel H.P., Sander S., and Xu X., A density-based algorithm for discovering clusters in large spatial databases with noise. In E. Simoudis, J. Han, and U. Fayyad, editors, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), pages 226–231, Menlo Park, CA, 1996. AAAI, AAAI Press.

    Google Scholar 

  • Estivill-Castro, V. and Yang, J. A Fast and robust general purpose clustering algorithm. Pacific Rim International Conference on Artificial Intelligence, pp. 208–218, 2000.

    Google Scholar 

  • Fraley C. and Raftery A.E., “How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis”, Technical Report No. 329. Department of Statistics University of Washington, 1998.

    Google Scholar 

  • Fisher, D., 1987, Knowledge acquisition via incremental conceptual clustering, in machine learning 2, pp. 139–172.

    Google Scholar 

  • Fortier, JJ. and Solomon, H. 1996. Clustering procedures. In proceedings of the Multivariate Analysis,’ 66, PR. Krishnaiah (Ed.), pp. 493–506.

    Google Scholar 

  • Gluck, M. and Corter, J., 1985. Information, uncertainty, and the utility of categories. Proceedings of the Seventh Annual Conference of the Cognitive Science Society (pp. 283–287). Irvine, California: Lawrence Erlbaum Associates.

    Google Scholar 

  • Guha, S., Rastogi, R. and Shim, K. CURE: An efficient clustering algorithm for large databases. In Proceedings of ACM SIGMOD International Conference on Management of Data, pages 73–84, New York, 1998.

    Google Scholar 

  • Han, J. and Kamber, M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2001.

    Google Scholar 

  • Hartigan, J. A. Clustering algorithms. John Wiley and Sons., 1975.

    Google Scholar 

  • Huang, Z., Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3), 1998.

    Google Scholar 

  • Hoppner F., Klawonn F., Kruse R., Runkler T., Fuzzy Cluster Analysis, Wiley, 2000.

    Google Scholar 

  • Hubert, L. and Arabie, P., 1985 Comparing partitions. Journal of Classification, 5. 193–218.

    Article  Google Scholar 

  • Jain, A.K. Murty, M.N. and Flynn, P.J. Data Clustering: A Survey. ACM Computing Surveys, Vol. 31, No.3, September 1999.

    Google Scholar 

  • Kaufman, L. and Rousseeuw, P.J., 1987, Clustering by Means of Medoids, In Y. Dodge, editor, Statistical Data Analysis, based on the LI Norm, pp. 405–416, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Kim, D.J., Park, Y.W. and Park,. A novel validity index for determination of the optimal number of clusters. IEICE Trans. Inf., Vol. E84-D, no.2, 2001, 281–285.

    Google Scholar 

  • King, B. Step-wise Clustering Procedures, J. Am. Stat. Assoc. 69, pp. 86–101, 1967.

    Article  Google Scholar 

  • Larsen, B. and Aone, C. 1999. Fast and effective text mining using linear-time document clustering. In Proceedings of the 5th ACM SIGKDD, 16–22, San Diego, CA.

    Google Scholar 

  • Marcotorchino, J.F. and Michaud, P. Optimisation en Analyse Ordinale des Donns. Masson, Paris

    Google Scholar 

  • Mishra, S. K. and Raghavan, V. V., An empirical study of the performance of heuristic methods for clustering. In Pattern Recognition in Practice, E. S. Gelsema and L. N. Kanal, Eds. 425436, 1994.

    Google Scholar 

  • Murtagh, F. A survey of recent advances in hierarchical clustering algorithms which use cluster centers. Comput. J. 26 354–359, 1984.

    Google Scholar 

  • Ng, R. and Han, J. 1994. Very large data bases. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB94, Santiago, Chile, Sept.), VLDB Endowment, Berkeley, CA, 144155.

    Google Scholar 

  • Rand, W. M., Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66: 846–850, 1971.

    Article  Google Scholar 

  • Ray, S., and Turi, R.H. Determination of Number of Clusters in K-Means Clustering and Application in Color Image Segmentation. Monash university, 1999.

    Google Scholar 

  • Selim, S.Z., and Ismail, M.A. K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. In IEEE transactions on pattern analysis and machine learning, vol. PAMI-6, no. 1, January, 1984.

    Google Scholar 

  • Selim, S. Z. AND Al-Sultan, K. 1991. A simulated annealing algorithm for the clustering problem. Pattern Recogn. 24,10 (1991), 10031008.

    Article  MathSciNet  Google Scholar 

  • Sneath, P., and Sokal, R. Numerical Taxonomy. W.H. Freeman Co., San Francisco, CA, 1973.

    MATH  Google Scholar 

  • Strehl A. and Ghosh J., Clustering Guidance and Quality Evaluation Using Relationship-based Visualization, Proceedings of Intelligent Engineering Systems Through Artificial Neural Networks, 2000, St. Louis, Missouri, USA, pp 483–488.

    Google Scholar 

  • Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering. In Proc. AAAI Workshop on AI for Web Search, pp 58–64, 2000.

    Google Scholar 

  • Tibshirani, R., Walther, G. and Hastie, T., 2000. Estimating the number of clusters in a dataset via the gap statistic. Tech. Rep. 208, Dept. of Statistics, Stanford University.

    Google Scholar 

  • Tyron R. C. and Bailey D.E. Cluster Analysis. McGraw-Hill, 1970.

    Google Scholar 

  • Urquhart, R. Graph-theoretical clustering, based on limited neighborhood sets. Pattern recognition, vol. 15, pp. 173–187, 1982.

    Article  MATH  Google Scholar 

  • Veyssieres, M.P. and Plant, R.E. Identification of vegetation state and transition domains in California’s hardwood rangelands. University of California, 1998.

    Google Scholar 

  • Wallace C. S. and Dowe D. L., Intrinsic classification by mml — the snob program. In Proceedings of the 7th Australian Joint Conference on Artificial Intelligence, pages 37–44, 1994.

    Google Scholar 

  • Wang, X. and Yu, Q. Estimate the number of clusters in web documents via gap statistic. May 2001.

    Google Scholar 

  • Ward, J. H. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58:236–244, 1963.

    Article  MathSciNet  Google Scholar 

  • Zahn, C. T., Graph-theoretical methods for detecting and describing gestalt clusters. IEEE trans. Comput. C-20 (Apr.), 68–86, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rokach, L., Maimon, O. (2005). Clustering Methods. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/0-387-25465-X_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-25465-X_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24435-8

  • Online ISBN: 978-0-387-25465-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics