Skip to main content

Advertisement

Log in

Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986–2005) and future climates (2046–2065 and 2081–2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1–2, 2–4, 4–8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1–3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046–2065) to 2.4 (2081–2100) month year−1 while under RCP8.5, the change ranges from 2.2 (2046–2065) to 3.0 month year−1 (2081–2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abiodun BJ, Pal JS, Afiesimama EA, Gutowski WJ, Adedoyin A (2008) Simulation of West African monsoon using RegCM3 Part II: impacts of deforestation and desertification. Theor Appl Climatol 93:245–261

    Article  Google Scholar 

  • Abiodun BJ, Adeyewa ZD, Oguntunde PG, Salami AT, Ajayi VO (2012) Modeling the impacts of reforestation on future climate in West Africa. Theor Appl Climatol 110(1–2):77–96

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop requirements, irrigation and drainage paper 56. FAO, Roma

    Google Scholar 

  • Andersen I, Dione O, Jarosewich-Holder M, Olivry JC (2005) The Niger River Basin: a vision for sustainable management. World Bank-Washington, DC. www.worldbank.org

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34:3001–3023

    Article  Google Scholar 

  • Conway D, Mahe G (2009) River flow modelling in two large river basins with non-stationary behaviour: the Parana and the Niger. Hydrol Process 23:3186–3192

    Article  Google Scholar 

  • Conway D, Persechino A, Ardoin-Bardin S, Hamandawana H, Dieulin C, Mahé G (2009) Rainfall and water resources variability in sub-Saharan Africa during the twentieth century. J Hydrometeorol 10:41–59

    Article  Google Scholar 

  • CSIRO (2011) Hydrological consequences of climate change-summary of outcomes for a scientific meeting held at CSIRO Discovery Centre, Canberra, November 15–16, 2007, pp 1–6

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65

    Article  Google Scholar 

  • Diasso U, Abiodun BJ (2015) Drought modes in West Africa and how well CORDEX RCMs simulate them. Theor Appl Climatol 1–18

  • Dieterich C, Schimanke S, Wang S, Väli G, Liu Y et al (2013) Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4 NEMO. Rep Oceanogr 47:80

    Google Scholar 

  • Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16:33–45

    Article  Google Scholar 

  • Druyan LM (2010) Studies of twenty-first-century precipitation trends over West Africa. Int J Climatol. doi:10.1002/joc2180

  • Du J, Fang J, Xu W, Shi P (2013) Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch Environ Res Risk Assess 27:377–387. https://doi.org/10.1007/s00477-012-0589-6

    Article  Google Scholar 

  • Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  • Harris I, Jone PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS310 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17:145–168

    Article  Google Scholar 

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007—the physical science basis: working group I contribution to the fourth assessment report of the IPCC Cambridge University Press, Cambridge

  • IPCC (2014) Climate change: impacts, adaptation, and vulnerability, Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, p 1132, 2014

  • Jensen ME, Burman RD, Allen RG (eds) (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on mengineering practices no. 70. Am. Soc. Civil Engrs: New York, NY; p 360

  • Joly M, Valdoire A, Douville H, Royer JF (2007) African monsoon teleconnections with tropical SSTs: validation and evolution of IPCC4 simulations. Clim Dyn 29:1–20

    Article  Google Scholar 

  • Karambiri H, García Galiano SG, Giraldo JD, Yacouba H, Ibrahim B, Barbier B, Polcher J (2011) Assessing the impact of climate variability and climate change on runoff in West Africa: the case of Senegal and Nakambe River basins. Atmos Sci Lett 12:109–115

    Article  Google Scholar 

  • Kasei R, Diekkrüger B, Leemhuis C (2010) Drought frequency in the Volta Basin of West Africa. Sustain Sci 5:89–97

    Article  Google Scholar 

  • KfW (2010) Adaptation to climate change in the upper and middle Niger River Basin River Basin Snapshot, draft for discussion, Entwicklungsbank, May 2010, p 41

  • Kingston DG, Todd MC, Taylor RG, Thompson JR, Arnell NW (2009) Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys Res Lett 36:L20403. https://doi.org/10.1029/2009GL040267

    Article  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375:52–64

    Article  Google Scholar 

  • Li KY, Coe MT, Ramankutty N, De Jong R (2007) Modeling the hydrological impact of land-use change in West Africa. J Hydrol 337:258–268

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res Atmos 99(D7):14415–14428

    Article  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    Article  Google Scholar 

  • Lu J, McNulty SG, Amatya DM (2005) A comparison of six potential evapotranspiration methods for regional use in the southeastern USA. J Am Water Res Assoc 41:621–633

    Article  Google Scholar 

  • Mahe G, Paturel JE, Servat E, Conway D, Dezetter A (2004) Impact of land use change on soil water holding capacity and river modelling of the Nakambe River in Burkina-Faso. J Hydrol 300(1–4):33–43

    Google Scholar 

  • Maidment DR, Olivera F, Reed S, Ye Z, Akmansoy S, McKinney DC (1997) Water balance of the Niger River Basin in West Africa. In: 17th Annual ESRI user conference, San Diego, CA. http://www.ce.utexas.edu/prof/maidment/atlas/esri97/ESRI.htm

  • Mason SJ, Lindesay JA (1993) A note on the modulation of Southern Oscillation-Southern African rainfall associations with the quasi-biennial oscillation. J Geophys Res 98:8847–8850

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proc of the 8th conference on applied climatology, 17–22 January, Anaheim, CA, American Meteorological Society, Boston, MA, pp 179–184

  • Meresa KH, Marzena O, Romanowicz R (2016) Hydro-meteorological drought projection in 21st century in selected catchments in Poland. Water 8(5):206. https://doi.org/10.3390/w8050206

    Article  Google Scholar 

  • Mounir ZM, Ma CM, Amadou I (2011) Application of Water Evaluation and Planning (WEAP): a model to assess future water demands in the Niger River (in Niger Republic). Modern Appl Sci 5(1):38–49

    Article  Google Scholar 

  • Nicholson SE (2005) On the question of the “recovery” of the rains in the West African Sahel. J Arid Environ 63(3):615–641

    Article  Google Scholar 

  • Nicholson SE, Ba MB, Kim JY (1996) Rainfall in the Sahel during 1994. J Clim 9:1673–1676

    Article  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078

    Article  Google Scholar 

  • Ogilvie A, Mahé G, Ward J, Serpantié G, Lemoalle J, Morand P, Barbier B, Diop AT, Caron A, Namarra R, Kaczan D, Lukasiewicz Paturel J-E, Gaston Liénou G, Clanet JC (2010) Water, agriculture and poverty in the Niger River Basin. Water Int 5:594–622

    Article  Google Scholar 

  • Oguntunde PG (2004) Evapotranspiration and complementarity relations in the water balance of the Volta Basin: field measurements and GIS-based regional estimates. Ecology and Development Series, no. 22, ISBN 3-86537-225-2. Cuvillier Verlag, Göttingen, Germany, p 169

  • Oguntunde PG, Abiodun BJ (2013) The impact of climate change on the Niger River Basin hydroclimatology. West Africa Clim Dyn 40:81–94

    Article  Google Scholar 

  • Oguntunde PG, Friesen J, van de Giesen N, Savenije HHG (2006) Hydroclimatology of the Volta River Basin in West Africa: trends and variability from 1901 to 2002. Phys Chem Earth 31:1180–1188

    Article  Google Scholar 

  • Oguntunde PG, Abiodun BJ, Lischeid G (2011) Rainfall trends in Nigeria, 1901–2000. J Hydrol 411:207–218

    Article  Google Scholar 

  • Oguntunde PG, Abiodun BJ, Lischeid G, Merz C (2014a) The impact of reforestation on the Niger River Basin hydroclimatology. West Africa Ecohydrol 7:163–176

    Article  Google Scholar 

  • Oguntunde PG, Lischeid G, Abiodun BJ, Dietrich O (2014b) Analysis of spatial and temporal patterns in onset, cessation and length of growing season in Nigeria. Agric For Meteorol 194:77–87

    Article  Google Scholar 

  • Oguntunde PG, Abiodun BJ, Lischeid G (2016) A numerical modelling study of the hydroclimatology of Niger River Basin. West Africa, Hydrolog Sci J. https://doi.org/10.1080/0262666672014980260

    Google Scholar 

  • Okpara JN, Perumal M (2009) Hydrological impacts assessment of climate change on water resources of Niger River Basin using water balance model and ANNs In: Joint international convention of 8th IAHS scientific assembly and 37th IAH congress on water: a vital resource under stress—how science can help September 6–12, 2009, Hyderabad, India

  • Olufayo AA, Oguntunde PG (2000) Estimating evapotranspiration potentials under tropical conditions of Africa. J Agric Eng 36(4):49–57

    Google Scholar 

  • Omotosho J, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over West Africa. Meteorol Appl 14:209–225

    Article  Google Scholar 

  • Osuch M, Romanowicz RJ, Lawrence D, Wong WK (2015) Assessment of the influence of bias correction on meteorological drought projections for Poland. Hydrol Earth Syst Sci Discuss 12:10331–10377

    Article  Google Scholar 

  • Osuch M, Romanowicz RJ, Lawrence D, Wong WK (2016) Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrol Earth Syst Sci 20:1947–1969

    Article  Google Scholar 

  • Patricola CM, Cook KH (2010) Sub-Saharan Northern African climate at the end of the twenty-first century: forcing factors and climate change processes. Clim Dyn. https://doi.org/10.1007/s00382-010-0907-y

    Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33. https://doi.org/10.1007/s10584-011-0149-y

    Article  CAS  Google Scholar 

  • Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett. https://doi.org/10.1029/2007GL032487

    Google Scholar 

  • Stagge JH, Tallaksen LM, Xu C-Y, Van Lanen HAJ (2014) Standardized Precipitation- Evapotranspiration Index (SPEI): sensitivity to potential evapotranspiration model and parameters. Hydrology in a changing world: environmnetal and human dimensions. In: Daniell TM (ed) Proceedings of FRIEND-water 2014. Montpellier, France, 7–10 October 2014. IAHS Publ. No. 363, IAHS Press, Centre for Ecology and Hydrology: Wallingford, UK, pp 367–373

  • Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K (2015) Candidate distributions for climatological drought indices (SPI and SPEI). Int J Climatol 35:4027–4040

    Article  Google Scholar 

  • Szwed M, Karg G, Pinskwar I, Radziejewski M, Graczyk D, Kedziora A, Kundzewicz ZW (2010) Climate change and its effect on agriculture, water resources and human health sectors in Poland. Nat Hazards Earth Syst Sci 10:1725–1737

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • van de Giesen N, Liebe J, Jung G (2010) Adapting to climate change in the Volta Basin. West Africa Curr Sci 98(8):1033–1038

    Google Scholar 

  • van der Schrier G, Jones PD, Briffa KR (2011) The sensitivity of the PDSI to the Thornthwaite and Penman–Monteith parameterizations for potential evapotranspiration. J Geophys Res 116:D03106. https://doi.org/10.1029/2010JD015001

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  • Warren A, Batterbury S, Osbahr H (2001) Soil erosion in the West African Sahel: a review and an application of a “local political ecology” approach in South West Niger. Glob Environ Change 11:79–95

    Article  Google Scholar 

  • Weiß M, Menzel L (2008) A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Adv Geosci 18(18):15–23

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the visiting fellowship support from Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany. All the positive comments from reviewers and editors which led to tremendous improvement of this manuscript are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. Oguntunde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguntunde, P.G., Lischeid, G. & Abiodun, B.J. Impacts of climate variability and change on drought characteristics in the Niger River Basin, West Africa. Stoch Environ Res Risk Assess 32, 1017–1034 (2018). https://doi.org/10.1007/s00477-017-1484-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1484-y

Keywords

Navigation