Skip to main content
Log in

Ensemble Climate Projection for Hydro-Meteorological Drought over a river basin in Central Highland, Vietnam

  • Hydro-Climatological Analysis for Floods and Droughts
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This study focuses on the Hydro-Meteorological Drought assessments by Ensemble Climate Projections from a regional climate model (Weather Research and Forecasting, WRF) that downscaled 3 Global Climate Models under a baseline period (1961–1990) and under a future scenario A2 for 2071–2100. The Meteorological Drought is assessed using the Standardized Precipitation Index (SPI) while the Hydrological Drought is analyzed by using both the semi-distributed hydrology model SWAT and Standardized Runoff Index (SRI). The catchment under study is a small river basin lying on the Central Highland area of Vietnam. This area is the source for perennial plantation which produces most of the coffee for Vietnam making it the world’s second most exporter of coffee next to Brazil. Additionally, this region is also one of the important sources for hydropower of Vietnam and one of the main tributaries for the Mekong river at the downstream. This region has been known prone to drought, especially during dry seasons of March and April. Therefore, simulating drought for this area is significant to study the water supply and water balance for the region for future planning and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abril, A. M. and Trevino, J. G. (2012). Standardized Runoff Index (SRI), WFD, Common Implementation Strategy — Water Scarcity and Droughts Expert Group, 12/2012, Bratislava.

    Google Scholar 

  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). “Large area hydrologic modeling and assessment, part I: Model development.” Journal of American Water Resources Association, Vol. 34, No. 11, pp. 73–89, DOI: 10.1111/j.1752-1688.1998.tb05961.x.

    Article  Google Scholar 

  • Dai, A. (2011). “Drought under global warming: A review.” WIREs Climatic Change, Vol. 2, pp. 45–65, DOI: 10.1002/wcc.81.

    Article  Google Scholar 

  • Dai, A. (2013). “Increasing drought under global warming in observations and models.” Nature Climate Change, Vol. 3, pp. 52–58, DOI: 10.1038/nclimate1633.

    Article  Google Scholar 

  • Dai, A. and Wigley, T. M. L. (2000). “Global Patterns of ENSO-induced Precipitation.” Geophysical Research Letters, Vol. 27, No. 9, pp. 1283–1286, DOI: 10.1029/1999GL011140.

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Joetzjer, E., Douville, H., Delire, C., Ciais, P., Decharme, B., and Tyteca, S. (2013). “Hydrologic benchmarking of meteorological drought indices at interannual to climate change timescales: A case study over the Amazon and Mississippi river basins.” Hydrology and Earth System Sciences, Vol. 17, pp. 4885–4895, DOI: 10.5194/hess-17-4885-2013.

    Article  Google Scholar 

  • Kane, R. P. (1999). “El Nino timings and rainfall extremes in India, Southeast Asia and China.” International Journal of Climatology, Vol. 19, pp. 653–672, DOI: 10.1002/(SICI)1097-0088(199905)19:6<653::AID-JOC379>3.0.CO;2-C.

    Article  Google Scholar 

  • Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C. (2007). “Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations.” Journal of Climate, Vol. 20, pp. 1419–1444, DOI: 10.1175/JCLI4066.1.

    Article  Google Scholar 

  • Lenderink, G., and Van Meijgaard, E. (2008). “Increase in hourly precipitation extremes beyond expectations from temperature changes.” Nature Geoscience, Vol. 1, pp. 511–514, DOI: 10.1038/ngeo262.

    Article  Google Scholar 

  • Li, J. B., Xie S. P., and Cook E. R. (2014). “El Nino phases embedded in Asian and North American drought reconstructions.” Quaternary Science Reviews, Vol. 85, pp. 20–34, DOI: 10.1016/j.quascirev.2013.11.014.

    Article  Google Scholar 

  • Liu, L., Hong, Y., Bednarczyk, C. N, Yong, B., Shafer, M. A., Riley, R., and Hocker, J. E. (2012). “Hydro-climatological drought analyses and projections using meteorological and hydrological drought indices: A case study in blue river basin, Oklahoma.” Water Resources Management, Vol. 25, pp. 2761–2779, DOI: 10.1007/s11269-012-0044-y.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., and Kleist, J. (1993). “The relationship of drought frequency and duration to time scales.” Proceedings of the 8th Conference of Applied Climatology, 17–22 January, Anaheim, CA. American Meterological Society, Boston, MA, pp. 179–184.

    Google Scholar 

  • Mo, K. C. and Lettenmaier, D. P. (2014) “Objective drought classification using multiple land surface models.” Journal of Hydrometeorology, Vol. 15, No. 3, pp. 990–1010, DOI: 10.1175/JHM-D-13-071.1

    Article  Google Scholar 

  • Ntale, H. K. and Gan, T. Y. (2003). “Drought indices and their application to East Africa.” International Journal of Climatology, Vol. 23, pp. 1335–1357, DOI: 10.1002/joc.931.

    Article  Google Scholar 

  • O’Gorman, P. A. (2012). “Sensitivity of tropical precipitation extremes to climate change.” Nature Geosciences, Vol. 5, pp. 697–700, DOI: 10.1038/ngeo1568.

    Article  Google Scholar 

  • Raghavan, S. V., Vu, M. T., and Liong, S. Y. (2014). “Impact of climate change on future stream flow in the Dakbla river basin.” Journal of Hydroinformatics, Vol. 16, No. 1, pp. 231–244, DOI: 10.2166/hydro.2013.165.

    Article  Google Scholar 

  • Raghavan, S. V., Vu, M. T., and Liong, S.-Y. (2012). “Assessment of future stream flow over the Sesan catchment of the Lower Mekong Basin in Vietnam.” Hydrological Processes, Vol. 26, No. 24, pp. 3661–3668, DOI: 10.1002/hyp.8452.

    Article  Google Scholar 

  • Sheffield, J. and Wood, E. F. (2008). “Projected changes in drought occurrence under future global warming from multi-model, multiscenario, IPCC AR4 simulations.” Climate Dynamics, Vol. 31, pp. 79–105, DOI: 10.1007/s00382-007-0340-z.

    Article  Google Scholar 

  • Shukla, S. and Wood, A. W. (2008). “Use of a standardized runoff index for characterizing hydrologic drought.” Geophysical Research Letter, Vol. 35, L02405, pp. 1–7, DOI: 10.1029/2007GL032487.

    Google Scholar 

  • Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2013). “Global warming and changes in drought.” Nature Climate Change. Vol. 4, pp. 17–22, DOI: 10.1038/nclimate2067.

    Article  Google Scholar 

  • Ummenhofer, C. C., D’Arrigo, R. D., Anchukaitis, K. J., Buckley, B. M., and Cook, E. R. (2012). “Links between Indo-Pacific climate variability and drought in the Monsoon Asia Drought Atlas.” Climate Dynamics, Vol. 40, Issues 5–6, pp. 1319–1334, DOI: 10.1007/s00382-012-1458-1.

    Google Scholar 

  • US EPA. Natural disaters. http://epa.gov/naturaldisasters/index.html (last access Sep 2014).

  • Vu, T. H., Ngo, D.T., and Phan, V. T. (2013). “Evolution of meteorological drought characteristics in Vietnam during the 1961–2007 period.” Theoretical Applied Climatology, Vol. 118, Issue 3, pp. 367–375, DOI: 10.1007/s00704-013-1073-z.

    Google Scholar 

  • Wang, D., Hejazi, M., Cai, X., and Valocchi, A. J. (2011). “Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois.” Water Resources Research, Vol. 47, Issues 9, pp. 1–13, DOI: 10.1029/2010WR009845.

    MATH  Google Scholar 

  • World Meteorological Organization (WMO) (2009). Experts agree on a universal drought index to cope with climate risks, WMO Press Release No. 872.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Vu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, M.T., Raghavan, V.S. & Liong, SY. Ensemble Climate Projection for Hydro-Meteorological Drought over a river basin in Central Highland, Vietnam. KSCE J Civ Eng 19, 427–433 (2015). https://doi.org/10.1007/s12205-015-0506-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0506-x

Keywords

Navigation