Skip to main content
Log in

A method to reduce the computational requirement while assessing uncertainty of complex hydrological models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The quantification of uncertainty in the simulations from complex physically based distributed hydrologic models is important for developing reliable applications. The generalized likelihood uncertainty estimation method (GLUE) is one of the most commonly used methods in the field of hydrology. The GLUE helps reduce the parametric uncertainty by deriving the probability distribution function of parameters, and help analyze the uncertainty in model output. In the GLUE, the uncertainty of model output is analyzed through Monte Carlo simulations, which require large number of model runs. This induces high computational demand for the GLUE to characterize multi-dimensional parameter space, especially in the case of complex hydrologic models with large number of parameters. While there are a lot of variants of GLUE that derive the probability distribution of parameters, none of them have addressed the computational requirement in the analysis. A method to reduce such computational requirement for GLUE is proposed in this study. It is envisaged that conditional sampling, while generating ensembles for the GLUE, can help reduce the number of model simulations. The mutual relationship between the parameters was used for conditional sampling in this study. The method is illustrated using a case study of Soil and Water Assessment Tool (SWAT) model on a watershed in the USA. The number of simulations required for the uncertainty analysis was reduced by 90 % in the proposed method compared to existing methods. The proposed method also resulted in an uncertainty reduction in terms of reduced average band width and high containing ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arabi M, Govindaraju RS, Engel B, Hantush M (2007) Multiobjective sensitivity analysis of sediment and nitrogen processes with a watershed model. Water Resour Res 43(6):W06409. doi:10.1029/2006WR005463

    Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling assessment: part I model development. J Am Water Resour Assoc 34(1):73–89

    Article  CAS  Google Scholar 

  • Athira P, Sudheer KP, Cibin R, Chaubey I (2011) Sensitivity analysis of stream flow generation parameters of SWAT model. Paper presented at the annual conference of the ASABE, Louisville, KY, paper No. 1111731

  • Beven KJ (1989) Changing ideas in hydrology: a case of physically based models. J Hydrol 105:157–172

    Article  Google Scholar 

  • Beven KJ (2000) On the future of distributed modeling in hydrology. Hydrol Process 14(16–17):3183–3184

    Article  Google Scholar 

  • Beven KJ (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36

    Article  Google Scholar 

  • Beven KJ, Binley AM (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process 6:279–298. doi:10.1002/hyp.3360060305

    Article  Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the glue methodology. J Hydrol 249(14):11–29

    Article  Google Scholar 

  • Blasone RS, Madsen H, Rosbjerg D (2008a) Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J Hydrol 353:18–32

    Article  Google Scholar 

  • Blasone RS, Vrugt JA, Madsen H, Rosbjerg D, Robinson BA, Zyvoloski GA (2008b) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour 31:630–648

    Article  Google Scholar 

  • Brigode P, Oudin L, Perrin C (2013) Hydrological model parameter instability: a source of additional uncertainty in estimating the hydrological impacts of climate change? J Hydrol 476:410–425. doi:10.1016/j.jhydrol.2012.11.012

    Article  Google Scholar 

  • Carota C, Parmigiani G, Polson NG (1996) Diagnostic measures for model criticism. J Am Statist Assoc 91:753–762

    Article  Google Scholar 

  • Chen J, Wu Y (2012) Advancing representation of hydrologic processes in the soil and water assessment tool (SWAT) through integration of the topographic model (TOPMODEL) features. J Hydrol 420–421:319–328

    Article  Google Scholar 

  • Cibin R, Sudheer KP, Chaubey I (2010) Sensitivity and dentifiability of stream flow generation parameters of the SWAT model. Hydrol Process 24(9):1133–1148

    Article  Google Scholar 

  • Cibin R, Athira P, Sudheer KP, Chaubey I (2014) Application of distributed hydrological models for predictions in ungauged basins: a method to quantify predictive uncertainty. Hydrol Process. doi:10.1002/hyp.9721

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Demaria EM, Njissen B, Wagener T (2007) Monte Carlo sensitivity analysis of land surface parameters using the variable infiltration capacity model. J Geophys Res 112:D11113

    Article  Google Scholar 

  • Doherty J (2004) PEST model—independent parameter estimation. Watermark Numerical Computing, Brisbane

    Google Scholar 

  • Duan Q, Sorooshian S, Gupta VK (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Article  Google Scholar 

  • Freer J, Beven KJ, Ambroise B (1996) Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 32(7):2161–2173

    Article  Google Scholar 

  • Gardner RH, O’Neill RV (1983) Parameter uncertainty and model predictions: a review of Monte Carlo results. In: Berk MB, Straten GV (eds) Uncertainty and forecasting of water quality. Springer, New York, pp 245–257

    Chapter  Google Scholar 

  • Gassman PW, Reyes MR, Geen CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications and future research directions. Trans ASABE 50(4):1211–1250

    Article  CAS  Google Scholar 

  • Hughes DA (2010) Hydrological models: mathematics or science? Hydrol Proces 24:2901–2201

  • Jia Y, Culver TB (2008) Uncertainty analysis for watershed modeling using generalized likelihood uncertainty estimation with multiple calibration measures. J Water Resour Plan Manage 134(2):97–106

  • Jin X, Chong-Yu Xu, Zhang Q, Singh VP (2010) Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J Hydrol 383:147–155

    Article  Google Scholar 

  • Katz RW (2002) Techniques for estimating uncertainty in climate change scenarios and impact studies. Climate Res 20:167–185

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty catchment models: the Metropolis algorithm. J Hydrol 211:69–85

    Article  Google Scholar 

  • Kullback S (1959) Information theory and statistics. Wiley, New York

    Google Scholar 

  • Li L, Xia J, Xu C-Y, Singh VP (2010) Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. J Hydrol 320:132–154

  • MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge (ISBN 0-521-64298-1)

  • Manache G, Melching CS (2008) Identification of reliable regression- and correlation-based sensitivity measures for importance ranking of water-quality model parameters. Environ Model Softw 23:549–562

    Article  Google Scholar 

  • Migliaccio KW, Chaubey I (2008) Spatial distributions and stochastic parameter influences on SWAT flow and sediment predictions. J Hydrol Eng 13(4):258–269

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil water assessment tool theoretical documentation. Version 2000. Texas Water Resource Institute, College Station, Texas. TWRI Report, TR-191

  • Rastetter EB, King AW, Cosby BJ, Hornberger GM, O’Neill RV, Hobbie JE (1992) Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecol Appl 2:55–70

    Article  Google Scholar 

  • Razavi S, Tolson BA (2013) An efficient framework for hydrologic model calibration on long data periods. Water Resour Res 49:8418–8431. doi:10.1002/2012WR013442

    Article  Google Scholar 

  • Refsgaard JC, Sluijs JP, Hojberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modeling process—a framework and guidance. Environ Model Softw 22:1543–1556

    Article  Google Scholar 

  • Renard B, Kavetski D, Kuczera G, Thyer M, Franks SW (2010) Understanding predictive uncertaintyin hydrologic modeling: the challenge of identifying input and structural errors. Water Resour Res 46:W05521. doi:10.1029/2009WR008328

    Google Scholar 

  • Shafii M,Tolson B, Matott LS (2014) Uncertainty based multi-criteria calibration of rainfall-runoff models: a comparative study. Stochast Environ Res Risk Assess. doi:10.1007/s00477-014-0855-x

  • Shen ZY, Chen L, Chen T (2012) The influence of parameter distribution uncertainty on hydrological and sediment modeling: a case study of SWAT model applied to the Daning watershed of the three gorges reservoir region, China. Stochast Environ Res Risk Assess. doi:10.1007/s00477-012-0579-8

  • Smith PJ, Tawn J, Beven KJ (2008) Informal likelihood measures in model assessment: theoretic development and investigation. Adv Water Resour. doi:10.1016/j.advwatres.2008.04.012

  • Sobol IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1:404–414

  • Srivastav RK, Sudheer KP, Chaubey I (2007) A simplified approach to quantify predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour Res 43(10) (Art. No. W10407). doi:10.1029/2006WR005352

  • Stedinger JR,Vogel RM, Lee SU, Batchelder R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44. doi:10.1029/2008WR006822

  • Tourassi GD, Frederick ED, Markey MK, Carey E, Floyd J (2001) Application of the mutual information criterion for feature selection in computer-aided diagnosis. Med Phys 28:2394–2402

    Article  CAS  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642

    Google Scholar 

  • Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Env Res Risk Assess 23(7):1011–1026. doi:10.1007/s00477-008-0274-y

    Article  Google Scholar 

  • Wang G, Xia J, Chen J (2009) Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: a case study of the Chaobai river basin in northern China. Water Resour Res 45:W00A11. doi:10.1029/2007WR006768

    Google Scholar 

  • Wiwatenadate P, Claycamp HG (2000) Error propagation of uncertainties in multiplicative models. Human Ecol Risk Assess 6:355–368

    Article  Google Scholar 

  • Wu Y, Liu S (2012) Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (FME): SWAT as an example. Environ Model Softw 31:99–109

    Article  Google Scholar 

  • Wu Y, Liu S (2014) Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions. Sci Total Environ 466–467:455–466

    Article  Google Scholar 

  • Xiong LH, Wan M, Wei XJ, O’Connor KM (2009) Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation. Hydrol Sci J (J Sci Hydrologiques) 54(5):852–871

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe basin in China. J Hydrol 358:1–23

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the performance of the strength Pareto evolutionary algorithm. Tech. Report 103. Zurich, Switzerland: Swiss Federal Institute of Technology (ETH), Computer Engineering and Communication Networks Lab (TIK)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Sudheer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, P., Sudheer, K.P. A method to reduce the computational requirement while assessing uncertainty of complex hydrological models. Stoch Environ Res Risk Assess 29, 847–859 (2015). https://doi.org/10.1007/s00477-014-0958-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0958-4

Keywords

Navigation