Skip to main content
Log in

Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Spatial and temporal characteristics of actual evapotranspiration over the Haihe River basin in China during 1960–2002 are estimated using the complementary relationship and the Thornthwaite water balance (WB) approaches. Firstly, the long-term water balance equation is used to validate and select the most suitable long-term average annual actual evapotranspiration equations for nine subbasins. Then, the most suitable method, the Pike equation, is used to calibrate parameters of the complementary relationship models and the WB model at each station. The results show that the advection aridity (AA) model more closely estimates actual evapotranspiration than does the Granger and Gray (GG) model especially considering the annual and summer evapotranspiration when compared with the WB model estimates. The results from the AA model and the WB model are then used to analyze spatial and temporal changing characteristics of the actual evapotranspiration over the basin. The analysis shows that the annual actual evapotranspirations during 1960–2002 exhibit similar decreasing trends in most parts of the Haihe River basin for the AA and WB models. Decreasing trends in annual precipitation and potential evapotranspiration, which directly affect water supply and the energy available for actual evapotranspiration respectively, jointly lead to the decrease in actual evapotranspiration in the basin. A weakening of the water cycle seems to have appeared, and as a consequence, the water supply capacity has been on the decrease, aggravating water shortage and restricting sustainable social and economic development in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation & Drainage Paper 56, FAO. ISBN 92-5-104219-5

  • Bouchet RJ (1963) Evapotranspiration réelle et potentielle, signification climatique. In: Symposium on Surface Waters, IAHS Publication No. 62, IAHS Press, Wallingford, pp 134–142

  • Brutsaert W, Stricker H (1979) An advection—aridity approach to estimate actual regional evapotranspiration. Water Resour Res 15(2):443–450

    Article  Google Scholar 

  • Chen D, Gao G, Xu CY, Guo J, Ren GY (2005) Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China. Clim Res 28:123–132

    Article  CAS  Google Scholar 

  • Courault D, Seguin B, Olioso A (2003) Review to estimate evapotranspiration from remote sensing data: some examples from the simplified relationship to the use of mesoscale atmospheric models. ICID Workshop on Remote Sensing of ET for Large Regions, pp 1–18

  • Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87:367–374

    Article  Google Scholar 

  • Cui X, Huang G, Chen W, Morse A (2009) Threatening of climate change on water resources and supply: case study of North China. Desalination 248:476–478

    Article  CAS  Google Scholar 

  • Dingman SL (2002) Physical hydrology. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Doyle P (1990) Modelling catchment evaporation: an objective comparison of the Penman and Morton approaches. J Hydrol 121:257–276

    Article  Google Scholar 

  • Eagleson PS (2002) Ecohydrology: Darwinian expression of vegetation form and function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • El Haj El Tahir M, Wang WZ, Xu CY, Zhang YJ, Singh VP (2011) Comparison of methods for estimation of regional actual evapotranspiration in data scarce regions: The Blue Nile region-Eastern Sudan. J Hydrol Eng. doi:10.1061/(ASCE)HE.1943-5584.0000429

  • Fu J, Qian W, Lin X, Chen D (2008) Trends of graded precipitation days in China from 1961 to 2000. Adv Atm Sci 25(2):267–278

    Article  Google Scholar 

  • Gao G, Chen D, Ren GY, Liao YM (2006) Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. J Geogr Sci 16(1):3–12 ISSN:1009-637X

    Article  Google Scholar 

  • Gao G, Chen D, Xu CY, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960–2002. J Geophys Res 112:D11120. doi:10.1029/2006JD008010

    Article  Google Scholar 

  • Granger RJ (1989) A complementary relationship approach for evaporation from nonsaturated surface. J Hydrol 111:31–38

    Article  Google Scholar 

  • Granger RJ (1998) Partitioning of energy during the snow-free season at the wolf Creek research basin. In: Pomeroy JW, Granger RJ (eds) Proceeding of a workshop held in Whitehorse, Yukon, pp 33–43

  • Granger RJ, Gray DM (1989) Evaporation from natural nonsaturated surface. J Hydrol 111:21–29

    Article  Google Scholar 

  • Hobbins MT, Ramirez JA, Brown TC (2001) Trends in regional evapotranspiration across the United States under the complementary relationship hypothesis. Hydro Days, pp 106–121

  • Kendall MG, Gibbons JD (1990) Rank correlation methods, 5th edn. Griffin, London, UK

    Google Scholar 

  • Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J 41(4):495–516

    Article  Google Scholar 

  • Kustas WP, Daughtry CST, Van Oevelen PJ (1993) Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices. Remo Sens Environ 46:319–330

    Article  Google Scholar 

  • Liu CM, Yu JJ (2001) Groundwater exploitation and its impact on the environment in the North China Plain. International water resources association. Water Int 26(2):265–272

    Article  Google Scholar 

  • Liu CZ, Liu ZY, Xie ZH (2004) Study of trends in runoff for the Haihe River basin in recent 50 years. J Appl Meteorol Sci 15(4):385–393 (In Chinese)

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Morton FI (1978) Estimating evapotranspiration from potential evaporation: practicality of an iconoclastic approach. J Hydrol 38:1–32

    Article  Google Scholar 

  • Morton FI (1983) Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J Hydrol 66:1–76

    Article  Google Scholar 

  • Ni GH, Sun FB, Yang DW, Cong CT, Lei ZD (2007) Analysis of actual evaporation variability over China during the last half century using the Budyko hypothesis. Methodology in Hydrology. In: Proceedings of the second international symposium on methodology in hydrology held in Nanjing, China, October–November 2005, IAHS Publ. 311, pp. 465–472

  • Ol’dekop EM (1911) On evaporation from the surface of river basins. Tr Meteorol Observ, Iur’evskogo Univ Tartu 4

  • Özhan S, Gökbulak F, Serengil Y, Özcan M (2010) Evapotranspiration from a mixed deciduous forest ecosystem. Water Resour Manage 24:2353–2363. doi:10.1007/s11269-009-9555-6

    Article  Google Scholar 

  • Pike JG (1964) The estimation of annual runoff from meteorological data in a tropical climate. J Hydrol 2:116–123

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat fluxes and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Qin DY, Lü JY, Liu JH, Wang MN (2009) Theories and calculation methods for regional objective ET. Chinese Sci Bull 54(1):150–157

    Article  Google Scholar 

  • Qiu XF, Zeng Y, Miao QL, Yu Q (2004) Estimation of annual actual evapotranspiration from nonsaturated land surfaces with conventional meteorological data. Sci China Ser D Ear Sci 47(3):239–246

    Article  Google Scholar 

  • Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153

    Article  Google Scholar 

  • Ren LL, Wang MR, Li CH, Zhang W (2002) Impacts of human activity on river runoff in the northern area of China. J Hydrol 261:204–217

    Article  Google Scholar 

  • Ren GY, Guo J, Xu MZ, Chu ZY, Zhang L, Zou XK, Li QX, Liu XN (2005) Climate change of China’s mainland and over the past half century. Acta Meteoro Sinica 63(6):942–956 (in Chinese)

    Google Scholar 

  • Schreiber P (1904) On the relationship between precipitation and the runoff of rivers in Central Europe. Meteoro Z 21:441–452

    Google Scholar 

  • Song Y, Chen D, Dong W (2006) Influence of climate on winter wheat productivity in different climate regions of China during 1961–2000. Clim Res 32:219–227

    Article  Google Scholar 

  • Teuling AJ, Hirschi M, Ohmura A, Wild M, Reichstein M, Ciais P, Buchmann N, Ammann C, Montagnani L, Richardson AD, Wohlfahrt G, Seneviratne SI (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett 36, L02404, doi:10.1029/2008GL036584

  • Thornthwaite CW, Mather JR (1955) The water balance. Publ Climatol 8(1):1–104

    Google Scholar 

  • Tsouni A, Kontoes C, Koutsoyiannis D, Elias P, Mamassis N (2008) Estimation of actual evapotranspiration by remote sensing: application in Thessaly Plain, Greece. Sensors 8:3586–3600. doi:10.3390/s8063586

    Article  Google Scholar 

  • van Heerwaarden CC, Vilà-Guerau de Arellano J, Teuling AJ (2010) Land‐atmosphere coupling explains the link between pan evaporation and actual evapotranspiration trends in a changing climate. Geophys Res Lett 37:L21401. doi:10.1029/2010GL045374

    Article  Google Scholar 

  • Wang ZY, Ding YH, He JH (2004) An updating analysis of the climate change in China in recent 50 years. Acta Meteoro Sinica 62(2):228–236 (In Chinese)

    Google Scholar 

  • Wang WG, Shao QX, Peng SZ, Zhang ZX, Xing WQ, An GY, Yong B (2011a) Spatial and temporal characteristics of changes in precipitation during 1957–2007 in the Haihe River basin, China. Stoch Environ Res Risk Assess 1–15, doi:10.1007/s00477-011-0469-5

  • Wang YJ, Liu B, Su BD, Zhai JQ, Gemmer M (2011b) Trends of calculated and simulated actual evaporation in the Yangtze River basin. J Clim. doi:10.1175/2011JCLI3933.1 (in press)

  • Xia Y, Winterhalter M, Fabian P (1999) A model to interpolate monthly mean climatological data at Bavarian forest climate stations. Theor Appl Climatol 64:27–38

    Article  Google Scholar 

  • Xia J, Zhang L, Liu CM, Yu JJ (2007) Towards better water security in North China. Water Resour Manage 21:233–247. doi:10.1007/s11269-006-9051-1

    Article  Google Scholar 

  • Xu CY, Chen D (2005) Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol Process 19:3717–3734. doi:10.1002/hyp.5853

    Article  CAS  Google Scholar 

  • Xu ZX, Li JY (2003) A distributed approach for estimating catchment evapotranspiration: comparison of the combination equation and the complementary relationship approaches. Hydro Process 17:1509–1523. doi:10.1002/hyp.1196

    Article  Google Scholar 

  • Xu CY, Singh VP (2004) Review on regional water resources assessment models under stationary and changing climate. Water Resour Manag 18(6):591–612

    Google Scholar 

  • Xu CY, Singh VP (2005) Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J Hydrol 308:105–121. doi:10.1016/j.jhydrol.2004.10.024

    Article  Google Scholar 

  • Xu CY, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93

    Google Scholar 

  • Yang YH, Tian F (2009) Abrupt change of runoff and its major driving factors in Haihe River Catchment, China. J Hydrol 374:373–383

    Article  Google Scholar 

  • Yang HB, Yang DW, Lei ZD, Sun FB, Cong ZT (2008) Regional variability of the complementary relationship between actual and potential evapotranspiration. J Tsinghua Univ (Sci & Tech) 48(9):1413–1416 (in Chinese)

    Google Scholar 

  • Yang HB, Yang DW, Lei ZD, Sun FB, Cong ZT (2009) Variability of complementary relationship and its mechanism on different time scales. Sci China Ser E-Tech Sci 52(4):1059–1067. doi:10.1007/s11431-008-0197-3

    Article  CAS  Google Scholar 

  • Yao AYM (1969) Climatic hazards to the agricultural potential in the North China Plain. Agric Meteorol 6(10):33–48

    Article  Google Scholar 

  • Zhang JY, Wang JX, Li Y, Zhang SL (2008) The changes in runoff of major river basins in China during the past 50 years. China Water Res 2:31–34 (in Chinese)

    Article  CAS  Google Scholar 

  • Zhang Q, Xu CY, Gemmer M, Chen YD, Liu CL (2009) Changing properties of precipitation concentration in the Pearl River basin, China. Stoch Environ Res Risk Assess 23:377–385

    Article  CAS  Google Scholar 

  • Zhang Q, Xu CY, Chen YQD, Ren LL (2011a) Comparison of evapotranspiration variations between the Yellow River and Pearl River Basin, China. Stoch Environ Res Risk Assess 25:139–150. doi:10.1007/s00477-010-0428-6

    Google Scholar 

  • Zhang ZX, Chen X, Xu C-Y, Yuan LF, Yong B, Yan SF (2011b) Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years. J Hydrol. doi:10.1016/j.jhydrol.2011.07.041

  • Zhu YH, Drake S, Lü HS, Xia J (2010) Analysis of temporal and spatial differences in eco-environmental carrying capacity related to water in the Haihe River Basins, China. Water Resour Manage 24:1089–1105. doi:10.1007/s11269-009-9487-1

    Article  Google Scholar 

  • Ziegler AD, Sheffield J, Maurer EP, Nussen B, Wood EF, Lettenmaier DP (2003) Detection of intensification in global- and continental-scale hydrological cycles: Temporal scale of evaluation. J Clim 16:535–547. doi:10.1175/1520-0442

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by 973 National Project in China—Mechanism research to water cycle evolution and high effective utilization of water resources in Haihe River Basin (2006CB403404), the Ministry of Water Resources’ special funds for scientific research on public causes, (No. 200901042), the Key Project of the Natural Science Foundation of China (No. 40730632), and the Program of Introducing Talents of Discipline to Universities—the 111 Project of Hohai University. We also would like to thank Dr. Shuiqing Yin, Mr.Tinghai Ou and Ms. Yumei Hu, for their helps on geographic information to make the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, G., Xu, CY., Chen, D. et al. Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch Environ Res Risk Assess 26, 655–669 (2012). https://doi.org/10.1007/s00477-011-0525-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0525-1

Keywords

Navigation