Skip to main content
Log in

Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

We show the potential of a new method combining tree-ring analyses on stems and on coarse roots of individual trees in order to advance the understanding of growth dynamics in forest trees. To this end, we studied the root–shoot allometry of trees and its dependence on site conditions. Along a gradient in water supply in Southern Germany from dry to moist sites we selected 43 Norway spruce trees (Picea abies [L.] H. Karst.) aged 65–100 years. Increment cores were taken from stem and main roots revealing aboveground and belowground growth course over the last 34 years. Annual growth rates in roots and stems and their allometric relationships were applied as surrogate variables for tree resource allocation to aboveground and belowground organs. The mean sensitivities of both stem and root chronologies were found to be site-specific, and increased from the moist through the dry sites. No temporal offset between aboveground and belowground growth reactions to climate conditions was found in Norway spruce at any of the sites. These results suggest that the root–shoot allometry depends on the specific site conditions only at the driest site, following the optimal biomass partitioning theory (the more restricted the water supply, the more organic matter allocation into the belowground organs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammer C, Wagner S (2002) Problems and options in modelling fine-root biomass of single mature Norway spruce trees at given points from stand data. Can J For Res 32:581–590

    Article  Google Scholar 

  • Andersen CP, Rygiewicz PT (1991) Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities. Environ Pollut 73:217–244

    Article  PubMed  CAS  Google Scholar 

  • Bazzaz FA, Grace J (eds) (1997) Plant resource allocation. Academic Press, San Diego

    Google Scholar 

  • Bendz-Hellgren M, Stenlid J (1995) Long-term reduction in the diameter growth of butt rot affected Norway spruce, Picea abies. For Ecol Manag 74:239–243

    Article  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12:862–882

    Article  Google Scholar 

  • Bolte A, Hertel D, Ammer Ch, Schmid I, Nörr R, Kuhr M, Redde N (2003) Freilandmethoden zur Untersuchung von Baumwurzeln. Forstarchiv 74:240–262

    Google Scholar 

  • Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, von Gadow K (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil 264:1–11

    Article  CAS  Google Scholar 

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    PubMed  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Coleman M (2007) Spatial and temporal pattern of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant Soil 299:195–213

    Article  CAS  Google Scholar 

  • Comeau PG, Kimmins JP (1989) Above-ground and below-ground biomass and production of lodgepole pine on sites with differing soil-moisture regimes. Can J For Res 19:447–454

    Article  Google Scholar 

  • Côté B, Bélanger N, Courchesne F, Fyles JW, Hendershot WH (2003) A cyclical but asynchronous pattern of fine root production and radial growth in a hardwood forest of southern Quebec and its relationships with annual variation of temperature and nutrient availability. Plant Soil 250:49–57

    Article  Google Scholar 

  • Coutts MP (1987) Developmental processes in tree root systems. Can J For Res 17:761–767

    Article  Google Scholar 

  • Coutts MP, Nielsen CCN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217:1–15

    Article  Google Scholar 

  • Dech JP, Maun MA (2006) Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes. Ann Bot 98:1095–1105

    Article  PubMed  Google Scholar 

  • Drexhage M, Gruber F (1999) Above- and below-stump relationships for Picea abies—estimating root system biomass from breast-height diameters. Scand J For Res 14:328–333

    Article  Google Scholar 

  • Drexhage M, Huber F, Colin F (1999) Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil 217:101–110

    Article  Google Scholar 

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–250

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Google Scholar 

  • Eissenstat DM (2002) Root lifespan, turnover and efficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 221–238

    Google Scholar 

  • Enders G et al (eds) (1996) Klimaatlas von Bayern/Bayerischer Klimaforschungsverbund. BayFORKLIM, München

    Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    Article  PubMed  CAS  Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520

    Article  PubMed  CAS  Google Scholar 

  • Foetzki A, Jonsson M, Kalberer M, Simon H, Mayer AC, Lundström T, Stöckli V, Ammann WJ (2004) Die mechanische Stabilität von Bäumen: das Projekt Baumstabilität des FB Naturgefahren. Eidgenössische Forschungsanstalt WSL, Birmensdorf. Forum für Wissen 2004:35–42

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Göttsche D (1972) Verteilung von Feinwurzeln und Mykorrhizen im Bodenprofil eines Buchen- und Fichtenbestandes im Solling. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft 88, Hamburg

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Bull 57:205–221

    Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hofman R, Ammer Ch (2008) Biomass partitioning of beech seedlings under the canopy of spruce. Austrian J For Sci 125:51–66

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Hutchings MJ, John EA (2004) The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann Bot 94:1–8

    Article  PubMed  Google Scholar 

  • Huxley JS, Teissier G (1936) Terminology of relative growth. Nature 137:780–781

    Article  Google Scholar 

  • Joslin JD, Wolfe MH (1998) Impacts of water input manipulations on fine root production and mortality in a mature hardwood forest. Plant Soil 204:165–174

    Article  CAS  Google Scholar 

  • Joslin JD, Wolfe MH, Hanson PJ (2000) Effects of altered water regimes on forest root systems. New Phytol 147:117–129

    Article  Google Scholar 

  • Kahle HP (1994) Modellierung der Zusammenhänge zwischen der Variation von klimatischen Elementen des Wasserhaushalts und dem Radialzuwachs von Fichten (Picea abies (L.) Karst.) aus Hochlagen des Südschwarzwalds. Dissertation, Universität Freiburg

  • Kahle HP, Spiecker H (1996) Adaptability of radial growth of Norway spruce to climate variations: results of a site specific dendroecological study in high elevations of the Black Forest (Germany). In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment and humanity: proceddings of the International Conference, Tucson, Arizona. Radiocarbon 1996, pp 785–801

  • Klemmt HJ, Heindl M, Werner R, Hussendörfer E, Pretzsch H (2009) Auswirkungen von Trockenjahren auf das Wachstum von Mischbeständen. AFZ-Der Wald 9:461–464

    Google Scholar 

  • Knutson K, Pyke D (2008) Western juniper and ponderosa pine ecotonal climate-growth relationships across landscape gradients in southern Oregon. Can J For Res 38:3021–3032

    Article  Google Scholar 

  • Kölling C (1999) Ergebnisse von Stoffhaushaltsuntersuchungen an 22 Waldklimastationen. Jahrbuch 1998 der Bayerischen Waldklimastationen. Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising

    Google Scholar 

  • Kölling C, Knoke T, Schall P, Ammer C (2009) Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarchiv 80:42–54

    Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 26:1360–1362

    Article  Google Scholar 

  • Köstler JN, Brückner E, Biebelriether H (1968) Die Wurzeln der Waldbäume. Parey

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401

    Article  Google Scholar 

  • Krause C (1992) Ganzbaumanalyse von Eiche, Buche, Kiefer und Fichte mit dendroökologischen Methoden. Dissertation, Universität Hamburg

  • Krause C, Eckstein D (1993) Dendrochronology of roots. Dendrochronologia 11:9–23

    Google Scholar 

  • Krause C, Morin H (1995) Changes in radial increment in stems and roots of balsam fir [Abies balsamea (L.) Mill.] after defoliation by spruce budworm. For Chron 71:747–754

    Google Scholar 

  • Krause C, Morin H (1999) Tree-ring pattern in stems and root systems of black spruce (Picea mariana) caused by spruce budworms. Can J For Res 29:1583–1591

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Levy PE, Wendler R, Van Oijen M, Cannell MGR, Millard P (2004) The effects of nitrogen enrichment on the carbon sink in coniferous forests: uncertainty and sensitivity analyses of three ecosystem models. Water Air Soil Pollut 4:67–74

    CAS  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Change Biol 13:2089–2109

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle D (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä A (1986) Implications of the pipe model theory on dry matter partitioning and height growth in trees. J Theor Biol 123:103–120

    Article  Google Scholar 

  • Mäkelä A, Valentine HT, Helmisaari HS (2008) Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytol 180:114–123

    Article  PubMed  Google Scholar 

  • Mäkinen H, Nöjd P, Mielikäinen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees 15:177–185

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tvejte B, Mielikäinen K, Röhle H, Spieker H (2003) Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 17:173–184

    Google Scholar 

  • Mattheck C, Breloer H (1992) Der Wurzelquerschnitt als Protokoll der Lastgeschichte. Allgemeine Forst-und Jagd-Zeitung 163:142–145

    Google Scholar 

  • Matthes-Sears U, Nash CH, Larson DW (1995) Constrained growth of trees in a hostile environment: the role of water and nutrient availability for Thuja occidentalis on cliff faces. Int J Plant Sci 156:311–319

    Article  Google Scholar 

  • Matyssek R, Schnyder H, Munch J-C, Osswald W, Pretzsch H, Treutter D (2005) Resource allocation in plants—the balance between resource sequestration and retention. Plant Biol 6:557–559

    Article  Google Scholar 

  • Mayer H (1984) Waldbau auf soziologisch-ökologischer Grundlage. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • McCabe GJ, Markstrom SL (2007) A monthly water-balance model driven by a graphical user interface. U.S. geological survey open-file report 2007

  • McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720

    Article  Google Scholar 

  • McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593

    Article  Google Scholar 

  • Meier IC, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Chang Biol 14:1–15

    Article  Google Scholar 

  • Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst 3:115–127

    Article  Google Scholar 

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from Lötschental, Switzerland. Dendrochronologia 21:69–78

    Article  Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind and site conditions. Tree Physiol 16:891–898

    PubMed  Google Scholar 

  • Nielsen CCN, Hansen JK (2006) Root CSA-root biomass prediction models in six tree species and improvement of models by inclusion of root architectural parameters. Plant Soil 280:339–356

    Article  CAS  Google Scholar 

  • Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889

    Article  PubMed  Google Scholar 

  • Nikolova PS (2007) Below-ground competitiveness of adult beech and spruce trees: resource investments versus returns. Dissertation, Technische Universität München, Freising

  • Nikolova PS, Raspe S, Andersen CP, Mainiero R, Blaschke H, Matyssek R, Häberle KH (2009) Effects of the extreme drought in 2003 on soil respiration in a mixed forest. Eur J For Res 128:87–98

    Google Scholar 

  • Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ Pollut 158:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580

    Article  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, Berlin

    Book  Google Scholar 

  • Pretzsch H (2010) Re-evaluation of allometry. State-of-the-art and perspective regarding individuals and stands of woody plants. Prog Bot 71:339–369

    Article  Google Scholar 

  • Puddu A, Luisi N, Capretti P, Santini A (2003) Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in Southern Italy. For Ecol Manag 180:37–44

    Article  Google Scholar 

  • Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. For Ecol Manag 175:253–273

    Article  Google Scholar 

  • R Development Core Team (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577

    Article  Google Scholar 

  • Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. Heidelberg

  • Rötzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 48:109–118

    Article  PubMed  Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity. Oecologia 140:543–550

    Article  PubMed  CAS  Google Scholar 

  • Schuhbäck T (2004) Nährelementenstatus und Bodenzustand an der Bestandesgrenze Buche-Fichte im Mischbestand Kranzberger Forst. Diploma Thesis, WZW, Technische Universität München, Freising

  • Schütt P, Schuck HJ, Stimm B (2002) Lexikon der Baum- und Straucharten. Das Standardwerk der Forstbotanik. Nikol Verlagsgesellschaft mbH & Co. KG, Hamburg

    Google Scholar 

  • Seifert T (2007) Simulating the extent of decay caused by Heterobasidion annosum s. l. in stems of Norway spruce. For Ecol Manag 248:95–106

    Article  Google Scholar 

  • Shepard D (1968) A two dimensional interpolation function for regularly spaced data. In: Proceedings of the 1968 23rd ACM national conference, Princeton

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form—the pipe model theory. I. Basic analyses. Jpn J Ecol 14:97

    Google Scholar 

  • Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331

    Article  Google Scholar 

  • Spangenberg A, Utschig H, Preuhsler T, Pretzsch H (2004) Characterising the effects of high ammonia emission on the growth of Norway spruce. Plant Soil 262:337–349

    Article  CAS  Google Scholar 

  • Stockfors J, Linder S (1998) Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiol 18:155–166

    PubMed  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. The University of Chicago Press, Chicago

    Google Scholar 

  • Urban ST, Lieffers VJ, MacDonald SE (1994) Release in radial growth in the trunk and structural roots of white spruce as measured by dendrochronology. Can J For Res 24:1550–1556

    Article  Google Scholar 

  • Utschig H, Bachmann M, Pretzsch H (2004) Das Trockenjahr 1976 bescherte langjährige Zuwachseinbrüche. LWF aktuell 43:17–18

    Google Scholar 

  • Valentine HT (1985) Tree-growth models: derivations employing the pipe-model theory. J Theor Biol 177:579

    Article  Google Scholar 

  • Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10:231–238

    Google Scholar 

  • Walter H, Lieth H (1960–1967) Klimadiagramm-Weltatlas. Jena, Germany

  • Wang JR, Letchford T, Comeau P, Kimmins JP (2000) Above- and below-ground biomass and nutrient distribution of a paper birch and subalpine mixed-species stand in the Sub-Boreal Spruce zone of British Columbia. For Ecol Manag 130:17–26

    Article  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215

    Article  Google Scholar 

  • Weinstein DA, Beloin RM, Yanai RD (1991) Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. Tree Physiol 9:127–146

    PubMed  CAS  Google Scholar 

  • Zirlewagen D, von Wilpert K (2001) Modeling water and ion fluxes in a highly structured, mixed-species stand. For Ecol Manag 143:27–37

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the communicating editor and four anonymous reviewers for their helpful contributions for improving the previous version of this manuscript. P. S. N. was funded by the Technische Universität München, Life Science Centre, Gender Issue Incentive Fund (Program “Förderung der Habilitandinnen an der Fakultät WZW”). C. Z. was funded by the Bavarian State Ministry of Agriculture and Forestry (board of trustees of the Bavarian State Institute of Forestry LWF, grant E 45). The authors wish to thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for providing funds for growth and yield research as part of the Collaborative Research Centre SFB 607 “Growth and Parasite Defence”. We thank also S. Seibold, G. Schütze, L. Ma and W. Jin for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petia Simeonova Nikolova.

Additional information

Communicated by S. Leavitt.

P. S. Nikolova and C. Zang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolova, P.S., Zang, C. & Pretzsch, H. Combining tree-ring analyses on stems and coarse roots to study the growth dynamics of forest trees: a case study on Norway spruce (Picea abies [L.] H. Karst). Trees 25, 859–872 (2011). https://doi.org/10.1007/s00468-011-0561-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0561-y

Keywords

Navigation