Skip to main content
Log in

Modification of cambial cell wall architecture during cambium periodicity in Populus tomentosa Carr.

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Cambium periodicity is correlated with changes in the cambial cell wall, but the heterogeneity of cell wall structure and composition makes it difficult to give an accurate interpretation, especially for complex secondary vascular tissues. A combination of different methods is necessary to reveal the structure of this complex cell wall. In this study, the cell wall architecture and composition of active and dormant cambial cells in Populus tomentosa were investigated by a combination of light microscopy, rapid-freezing and deep-etching electron microscopy, Fourier-transform infrared microspectroscopy and immuno-histochemistry. The results showed that the architecture of dormant cambial cell walls displayed a multi-layered structure, denser fibril network, smaller pore size, and fewer crosslinks between microfibrils than active cambial cell walls. The FTIR spectra of cell walls from active and dormant cambium showed differences in the intensity of bands near 1,740, 1,629, 1,537, 1,240, and 830 cm−1, which reflected differences in cell wall composition. Immuno-labeling indicated that high methyl-esterified homogalacturonan and (1 → 4)-β-d-galactan epitopes were abundant and distributed in active cambial cell walls, and relatively de-esterified homogalacturonan and (1 → 5)-α-l-arabinan epitopes had weak labeling in the active cambium, while almost no labeling or very weak labeling for high methyl-esterified homogalacturonan, (1 → 4)-β-d-galactan and (1 → 5)-α-l-arabinan epitopes occurred in dormant cambial cells, except for the de-esterified homogalacturonan epitope, which was abundant in dormant cambial cells. These results demonstrate that there are great differences, both in structure and composition, between active and dormant cambial cell walls, which reflect their dynamic changes during cambium activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969

    Article  CAS  Google Scholar 

  • Aloni R (2004) The induction of vascular tissue by auxin. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer, Dordrecht, pp 471–492

    Google Scholar 

  • Baïer M, Goldberg R, Catesson AM, Liberman M, Bouchemal N, Michon V, Hervé du Penhoat C (1994) Pectin changes in samples containing poplar cambium and inner bark in relation to the seasonal cycle. Planta 193:446–454

    Article  Google Scholar 

  • Barnett JR (1973) Seasonal variation in the ultrastructure of the cambium in New Zealand grown Pinus radiata D. Don. Ann Bot 37:1005–1115

    Google Scholar 

  • Barron C, Parker ML, Mills ENC, Rouau X, Wilson RH (2005) FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness. Planta 220:667–677

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565

    Article  CAS  PubMed  Google Scholar 

  • Catesson AM (1994) Cambial ultrastructure and biochemistry: changes in relation to vascular tissue differentiation and the seasonal cycle. Int J Plant Sci 155:251–261

    Article  CAS  Google Scholar 

  • Chaffey N, Barlow P, Barnett JR (1998) A seasonal cycle of cell wall structure is accompanied by a cyclical rearrangement of cortical microtubules in fusiform cambial cells within taproots of Aesculus hippocastanum. New Phytol 139:623–635

    Article  Google Scholar 

  • Chang S-S, Clair B, Ruelle J, Beauche J, Renzo FD, Quignard F, Zhao G-J, Yamamoto H, Gril J (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Carpita NC, Reiter WD, Wilson RH, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16:385–392

    Article  CAS  PubMed  Google Scholar 

  • Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of antihomogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800

    Article  CAS  PubMed  Google Scholar 

  • Colom X, Carrillo F (2005) Comparative study of wood samples of the northern area of Catalonia by FTIR. J Wood Chem Technol 25:1–11

    Article  CAS  Google Scholar 

  • Ermel F, Follet-Gueye ML, Cibert C, Vian B, Morvan C, Catesson AM, Goldberg R (2000) Differential localization of arabinan and galactan side chains of rhamnogalacturonan I in cambial derivatives. Planta 210:732–740

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Ruiz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi P, Bako L, Bhalerao R (2004) Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J 38:603–615

    Article  CAS  PubMed  Google Scholar 

  • Farrar JJ, Evert RF (1997) Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia. Trees 11:191–202

    Google Scholar 

  • Follet-Gueye ML, Ermel FF, Vian B, Catesson AM, Goldberg R (2000) Pectin remodeling during cambial derivative differentiation. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. Bios, Oxford, pp 289–293

    Google Scholar 

  • Fujino T, Itoh T (1998) Changes in the three dimensional architecture of cell wall during lignification of xylem cells in Eucalyptus tereticornis. Holzforschung 52:111–116

    Article  CAS  Google Scholar 

  • Guglielmino N, Liberman M, Jauneau A, Vian B, Catesson AM, Goldberg R (1997) Pectin immunolocalization and calcium visualization in differentiating derivatives from poplar cambium. Protoplasma 199:151–160

    Article  CAS  Google Scholar 

  • Hafren J, Fujino T, Itoh T (1999) Changes in cell wall architecture of differentiating tracheids of Pinus thunbergii during lignification. Plant Cell Physiol 40:532–541

    CAS  Google Scholar 

  • Hori R, Sugiyama J (2003) A combined FT-IR microscopy and principal components analysis on softwood cell walls. Carbohydr Polym 52:449–453

    Article  CAS  Google Scholar 

  • Iqbal M (1995) The cambial derivatives. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1 → 4)-β-d-galactan. Plant Physiol 113:1405–1412

    CAS  PubMed  Google Scholar 

  • Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  CAS  Google Scholar 

  • Labbe N, Rials TG, Kelley SS, Cheng ZM, Kim JY, Li Y (2005) FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues. Wood Sci Technol 39:61–77

    Article  CAS  Google Scholar 

  • Larson PR (1994) The vascular cambium. Springer, Berlin

    Google Scholar 

  • Li WF, Ding Q, Chen JJ, Cui KM, He XQ (2009) Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa. J Exp Bot 60:2621–2630

    Article  CAS  PubMed  Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant growth regulators in forest tree cambial growth. Plant Growth Regul 6:137–169

    Article  CAS  Google Scholar 

  • Marga F, Gallo A, Hasenstein KH (2003) Cell wall components affect mechanical properties: studies with thistle flowers. Plant Physiol Biochem 41:792–797

    Article  CAS  Google Scholar 

  • McCann MC, Hammouri M, Wilson R, Belton P, Roberts K (1992) Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol 100:1940–1947

    Article  CAS  PubMed  Google Scholar 

  • McCann MC, Chen L, Roberts K, Kemsley EK, Sene C, Carpita NC, Stacey NJ, Wislon RH (1997) Infrared microspectroscopy: Sampling heterogeneity in plant cell wall composition and architecture. Physiol Plant 100:729–738

    Article  CAS  Google Scholar 

  • McCann MC, Defernez M, Urbanowicz BR, Tewari JC, Langewisch T, Olek A, Wells B, Wilson RH, Carpita NC (2007) Neural network analyses of infrared spectra for classifying cell wall architectures. Plant Physiol 143:1314–1326

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    Article  CAS  PubMed  Google Scholar 

  • Micheli F, Sundberg B, Goldberg R, Richard L (2000) Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. Plant Physiol 124:191–199

    Article  CAS  PubMed  Google Scholar 

  • Mwange KN, Hou HW, Wang YQ, He XQ, Cui KM (2005) Opposite patterns in the annual distribution and time course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. J Exp Bot 56:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Rensing KH, Samuels AL (2004) Cellular changes associated with rest and quiescence in winter-dormant vascular cambium of Pinus contorta. Trees 18:373–380

    Article  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RH (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Itoh T (2001) The changes in cell wall architecture during lignification of bamboo, Phyllostachys aurea Carr. Trees 15:137–147

    Article  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1 → 5)-α-l-arabinan. Carbohydr Res 308:149–152

    Article  CAS  PubMed  Google Scholar 

  • Yin YF, Jiang XM, Cui KM (2002) Seasonal changes in the ultrastructure of the vascular cambium in shoots of Populus tomentosa. Acta Bot Sin 44:1268–1277

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30530620, 30670120, 30872001). We thank Prof. J. Paul Knox (University of Leeds, UK) and Prof. Jinxing Lin (Institute of Botany, CAS, China) for providing the antibodies, Dr. Iain C. Bruce (Zhejiang University, China) for critical reading of the manuscript, and the two anonymous reviewers for their constructive comments on the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Ming Cui or Xin-Qiang He.

Additional information

Communicated by T. Fourcaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HM., Han, JJ., Cui, KM. et al. Modification of cambial cell wall architecture during cambium periodicity in Populus tomentosa Carr.. Trees 24, 533–540 (2010). https://doi.org/10.1007/s00468-010-0424-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0424-y

Keywords

Navigation