Skip to main content

Advertisement

Log in

Tree-ring formation, radial increment and climate–growth relationship: assessing two potential tree species used in Brazilian Atlantic forest restoration projects

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This paper provides an overview of radial growth and tree-ring formation of two tropical tree species used in ecological restoration. It shows that trees growing in natural forests and in plantations have the same diametric growth patterns and climate responses.

Abstract

Understanding the outcomes of ecological restoration projects represents an important step in the conservation of endangered biomes such as the Atlantic forest in Brazil. Tree-ring analysis provides long-term information about the growth dynamics of tree species that can be used to evaluate the potential of different species for restoration projects. To evaluate the potential of using Pseudobombax grandiflorum (Cav.) A. Robyns and Citharexylum myrianthum Cham. in restoration projects in the endangered Atlantic Rain Forest (Reserva Biológica de Poço das Antas—RBPA, Rio de Janeiro, Brazil), we verified the seasonality of tree-ring formation to analyze radial growth dynamics and climate–growth relationships of these species. Cambium wounding experiments and direct anatomical analysis of the cambial zone were conducted to assess tree-ring formation periodicity. Tree-ring widths were measured to build tree-ring chronologies and to estimate radial growth rates in natural and planted areas. Both species produced annual tree rings that are produced during the wet season. Tree-ring chronologies of both species have a positive association with rainfall, but each species also responded to rainfall of a specific season. Tree-ring widths of P. grandiflorum were correlated with rainfall at the end of the previous growth season while tree-ring widths of C. myrianthum were correlated with precipitation in the beginning of the growth season. Both species have fast radial growth, but different long-term growth trends. The growth trend for Pseudobombax grandiflorum produces a positive correlation between diameter and age for the trees, while trees of Citharexylum myrianthum have an age-related growth trend and grow faster in the early years. In the present study, we confirm the success of the ecological restoration performed in RBPA as the plantation does not affect the potential growth of the studied species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Barros CF, Callado CH (1997) Madeiras da Mata Atlântica: anatomia do lenho de espécies ocorrentes nos remanescentes florestais do Estado do Rio de Janeiro—Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Barros CF, Callado CH, Marcon ML, Costa CG, Cunha M, Lima HRP, Marquete O (2001) Madeiras da Mata Atlântica: anatomia do lenho de espécies ocorrentes nos remanescentes florestais do Estado do Rio de Janeiro – Brasil vol2. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro

  • Bennett HS, Wyrick AD, Lee SW, Mcneil JH (1976) Science and art in preparing tissues embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Technol 51:71–97

    Article  CAS  PubMed  Google Scholar 

  • Boninsegna J, Argollo J, Aravena JC et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228

    Article  Google Scholar 

  • Brandes AFN, Lisi CS, Barros CF (2011) Dendrochronology of lianas of the Leguminosae family from the Atlantic Forest, Brazil. Trees 25:133–144

    Article  Google Scholar 

  • Brandes AFN, Lisi CS, Silva LDSAB et al (2015) Seasonal cambial activity and wood formation in trees and lianas of Leguminosae growing in the Atlantic Forest: a comparative study. Botany 93:211–220

    Article  Google Scholar 

  • Brandes AFN, Albuquerque RP, Moraes LFD de, Barros CF (2016) Annual tree rings in Piptadenia gonoacantha (Mart.) J.F.Macbr. in a restoration experiment in the Atlantic Forest: potential for dendroecological research. Acta Bot Bras 30:383–388

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    Article  PubMed  Google Scholar 

  • Brienen RJW, Zuidema PA (2006) The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. For Ecol Manag 226:256–267

    Article  Google Scholar 

  • Callado CH, Neto SJ, da S, Scarano FR (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497

    Google Scholar 

  • Callado CH, Roig FA, Tomazello-Filho M, Barros CF (2013) Cambial growth periodicity studies of South American woody species—a review. IAWA J 34:213–230

    Article  Google Scholar 

  • Callado CH, Vasconcellos TJ, Costa MS, Barros CF, Roig FA, Tomazello-Filho M (2014) Studies on cambial activity: advances and challenges in the knowledge of growth dynamics of Brazilian woody species. An Acad Bras Cienc 86:277–283

    Article  PubMed  Google Scholar 

  • Christo AG, Guedes-Bruni RR, Fonseca-Kruel VS (2006) Uso de recursos vegetais em comunidades rurais limítrofes à Reserva biológica de Poço das Natas, Silva Jardim, Rio de Janeiro: estudo de caso na Gelba Aldeia Velha. Rodriguésia 57:519–542

    Article  Google Scholar 

  • Christo AG, Guedes-bruni RR, Sobrinho FDAP, Silva AG, Peixoto AL (2009) Structure of the shrub-arboreal component of an Atlantic Forest fragment on a hillock in the central lowland of Rio de Janeiro, Brazil. Interciencia 34:232–239

    Google Scholar 

  • Costa MS, Ferreira KEB, Botosso PC, Callado CH (2015) Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil. Dendrochronologia 36:23–32

    Article  Google Scholar 

  • De Ridder M, Trouet V, Van den Bulcke J, Hubau W, Van Acker J, Beeckman H (2013a) A tree-ring based comparison of Terminalia superba climate-growth relationships in West and Central Africa. Trees 27:1225–1238

    Article  Google Scholar 

  • De Ridder M, Van den Bulcke J, Van Acker J, Beeckman H (2013b) Tree-ring analysis of an African long-lived pioneer species as a tool for sustainable forest management. For Ecol Manag 304:417–426

    Article  Google Scholar 

  • Devall MS, Parresol BR, Wright SJ (1995) Dendroecological analysis of Cordia alliodora, Pseudobombax septenatum and Annona spraguei in central Panama. IAWA J 16:411–424

    Article  Google Scholar 

  • Eisenlohr PV, Oliveira-filho AT, Prado J (2015) The Brazilian Atlantic forest: new findings, challenges and prospects in a shrinking hotspot. Biodivers Conserv 24:2129–2133

    Article  Google Scholar 

  • Ferreira WC, Botelho SA, Davide AC, Faria JMR (2007) Avaliação do crescimento do estrato arbóreo de área degradada revegetada à margem do Rio Grande, na Usina Hidrelétrica de Camargos, MG. Rev Árvore 31:177–185

    Article  Google Scholar 

  • Fonseca Júnior SF, Piedade MTF, Schöngart J (2009) Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in Central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees 23:127–134

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. The Blackburn press, New Jersey

    Google Scholar 

  • Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105:129–133

    Article  Google Scholar 

  • Lake PS (2001) On the maturing of restoration: linking ecological research and restoration. Ecol Manag Restor 2(2):110–115

    Article  Google Scholar 

  • Lima HC, Pessoa SVA, Guedes-Bruni RR, Moraes LFD, Granzotto SV, Iwamoto S, Di Cicero J (2006) Caracterização fisionômico-florística e mapeamento da vegetação da Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia 53:369–389

    Article  Google Scholar 

  • Lisi CS, Tomazello M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J 29:189–207

    Article  Google Scholar 

  • Locosselli GM, Schöngart J, Ceccantini G (2016) Climate/growth relations and teleconnections for a Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst. Trees 30:1127–1136

    Article  Google Scholar 

  • Locosselli GM, Krottenthaler S, Pitsch P, Anhuf D, Ceccantini G (2017) Age and growth rate of congeneric tree species (Hymenaea spp.—Leguminosae) inhabiting different tropical biomes. Erdkunde 71(1):46–57

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores Brasileiras: manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil, 4a. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Marcati CR, Angyalossy V, Evert RF (2006) Seasonal variation in wood formation of Cedrela fissilis (Meliaceae). IAWA J 27(2):199–211

    Article  Google Scholar 

  • Marcati CR, Milanez CRD, Machado SR (2008) Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees 22:3–12

    Article  Google Scholar 

  • Mariaux A (1967) Les cernes dans les bois tropicaux africans nature et périodicité. Rev Bois Trop 114:23–37

    Google Scholar 

  • Moraes LFD de, Assumpção JM, Luchiari C, Pereira TS (2006) Plantio de espécies arbóreas nativas para a restauração ecológica na Reserva Biológica de Poço das Antas, Rio de Janeiro, Brasil. Rodriguésia 57:477–489

    Article  Google Scholar 

  • Moraes LFD, Campello EFC, Pereira MG, Loss A (2008) Características do solo na restauração de áreas degradadas na Reserva Biológica de Poço das Antas, RJ. Ciência Florestal 18:193–206

    Article  Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32:786–792

    Article  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Palmer MA, Falk DA, Zedler JB (2006) Ecological theory and restoration ecology. In: Falk DA, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington, pp 1–10

    Google Scholar 

  • Pereira TS, Costa MLMN da, Moraes LFD, Luchiari C (2008) Fenologia de espécies arbóreas em floresta Atlântica da Reserva Biológica de Poço das Antas, Rio de Janeiro, Brasil. Iheringia Sér Bot 63:329–339

    Google Scholar 

  • Rao KS, Rajput KS (1999) Seasonal behaviour of vascular cambium in teak (tectona grandis) growing in moist deciduous and dry deciduous forests. IAWA J 20:85–93

    Article  Google Scholar 

  • Reis-Avila G, Oliveira JM (2017) Lauraceae: a promising family for the advance of neotropical dendrochronology. Dendrochronologia 44:103–116

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142:1242–1251

    Article  Google Scholar 

  • Roig FA (2000) Dendrocronologia en América Latina. EDIUNC, Mendoza

    Google Scholar 

  • Rozendaal DM, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16

    Article  Google Scholar 

  • Sansevero JBB, Prieto PV, de Moraes LFD, Rodrigues PJFP (2011) Natural regeneration in plantations of native trees in lowland Brazilian Atlantic forest: community structure, diversity, and dispersal syndromes. Restor Ecol 19:379–389

    Article  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M, Piedade MTF, Krambeck H, Junk WJ (2007) Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664

    Article  Google Scholar 

  • Schöngart J, Arieira J, Fortes CF, Arruda EC, Cunha CN (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal. Brazil Biogeosci 8:3407–3421

    Article  CAS  Google Scholar 

  • Schöngart J, Bräuning A, Carolina A, Lisi CS, Oliveira JM (2017) Dendroecological studies in the neotropics: history, status and future challenges. In: Amoroso MM, Daniels LD, Baker PJ, Camarero JJ (eds) Dendroecology, ecological studies, vol 231. Springer, Cham, pp 35–73

    Google Scholar 

  • Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, Tucson

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment—dendroecology. Haupt Press, Berne

    Google Scholar 

  • Speer JH (2009) Fundamentals of tree-ring research. University of Arizona Press, Tucson

    Google Scholar 

  • Vasconcellos TJ, Cunha M, Callado CH (2016) A comparative study of cambium histology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) under urban pollution. Environ Sci Pollut Res 1–14

  • Walter H, Lieth H (1960) Klimadiagramm Weltatlas. VEB Gustav Fischer-Verlag, Jena

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bull 10:109–122

    Article  Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403

    Article  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics - a brief history and an outlook to future challenges. Dendrochronologia 20:217–231

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We also thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ) for the financial support; The Reserva Biológica de Poço das Antas for logistical support and Dr. Erik Wild for English review and linguistic improvement to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael P. Albuquerque.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. Piovesan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, R.P., Brandes, A.F.N., Lisi, C.S. et al. Tree-ring formation, radial increment and climate–growth relationship: assessing two potential tree species used in Brazilian Atlantic forest restoration projects. Trees 33, 877–892 (2019). https://doi.org/10.1007/s00468-019-01825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01825-6

Keywords

Navigation