Skip to main content

Advertisement

Log in

Developmental changes of MPA exposure in children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Developmental changes (ontogeny) of drug disposition of Mycophenolate mofetil (MMF) have been understudied.

Methods

The charts of 37 pediatric renal transplant recipients (median age 7.3 years, median follow-up 7.8 (IQR 6.6, 14.3 years) who had regular mycophenolic acid (MPA) trough level monitoring in combination with tacrolimus (n = 31) or sirolimus (n = 6) therapy were analyzed retrospectively for their dose-normalized MPA exposure, steroid dose, albumin, hematocrit, and cystatin C estimated glomerular filtration rate (eGFR). Using appropriate univariate and multivariate methods, we determined whether MPA exposure was age dependent when controlling for the confounders.

Results

Dose-normalized MPA trough levels could be calculated in 2,128 (median 45/patient) instances. Spearman rank correlation analysis revealed that age correlated with dose-normalized MPA trough level for both body weight and body surface area, as well as serum albumin, hematocrit, steroid dose, and eGFR. In the multivariate analysis, serum albumin and steroid dose were not significant, and hematocrit only being significant when the youngest group of patients <6 years of age was compared. eGFR was the most important confounder, but age dependency remained significant when controlling for all confounders.

Conclusions

Small children are at a significantly greater risk for low MPA trough levels than adolescents, highlighting the need for pharmacokinetic monitoring of MPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Filler G, Lepage N (2004) To what extent does the understanding of pharmacokinetics of mycophenolate mofetil influence its prescription. Pediatr Nephrol 19:962–965

    PubMed  Google Scholar 

  2. Tett SE, Saint-Marcoux F, Staatz CE, Brunet M, Vinks AA, Miura M, Marquet P, Kuypers DR, van Gelder T, Cattaneo D (2011) Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev 25:47–57

    Article  Google Scholar 

  3. Staatz CE, Tett SE (2014) Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 88:1351–1389

    Article  CAS  PubMed  Google Scholar 

  4. Le Meur Y, Borrows R, Pescovitz MD, Budde K, Grinyo J, Bloom R, Gaston R, Walker RG, Kuypers D, van Gelder T, Kiberd B (2011) Therapeutic drug monitoring of mycophenolates in kidney transplantation: report of The Transplantation Society consensus meeting. Transplant Rev 25:58–64

    Article  Google Scholar 

  5. Tonshoff B, David-Neto E, Ettenger R, Filler G, van Gelder T, Goebel J, Kuypers DR, Tsai E, Vinks AA, Weber LT, Zimmerhackl LB (2011) Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev (Orlando) 25:78–89

    Article  Google Scholar 

  6. Weber LT, Hoecker B, Armstrong VW, Oellerich M, Tonshoff B (2008) Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit 30:570–575

    Article  CAS  PubMed  Google Scholar 

  7. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  CAS  PubMed  Google Scholar 

  8. Zeng L, Blair EY, Nath CE, Shaw PJ, Earl JW, Stephen K, Montgomery K, Coakley JC, Hodson E, Stormon M, McLachlan AJ (2010) Population pharmacokinetics of mycophenolic acid in children and young people undergoing blood or marrow and solid organ transplantation. Br J Clin Pharmacol 70:567–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filler G, Foster J, Berard R, Mai I, Lepage N (2004) Age-dependency of mycophenolate mofetil dosing in combination with tacrolimus after pediatric renal transplantation. Transplant Proc 36:1327–1331

    Article  CAS  PubMed  Google Scholar 

  10. Filler G, Bendrick-Peart J, Christians U (2008) Pharmacokinetics of mycophenolate mofetil and sirolimus in children. Ther Drug Monit 30:138–142

    Article  CAS  PubMed  Google Scholar 

  11. Filler G, Ferrand A (2014) Do we need to worry about mycophenolate overdose? Expert Opin Drug Saf 13:521–524

    Article  CAS  PubMed  Google Scholar 

  12. Todorova EK, Huang SS, Kobrzynski MC, Filler G (2015) What is the intrapatient variability of mycophenolic acid trough levels? Pediatr Transplant. doi:10.1111/petr.12637

    Google Scholar 

  13. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311, discussion 312-303

    PubMed  Google Scholar 

  14. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  15. Forestier F, Daffos F, Galacteros F, Bardakjian J, Rainaut M, Beuzard Y (1986) Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res 20:342–346

    Article  CAS  PubMed  Google Scholar 

  16. Rodoo P, Ridefelt P, Aldrimer M, Niklasson F, Gustafsson J, Hellberg D (2013) Population-based pediatric reference intervals for HbA1c, bilirubin, albumin, CRP, myoglobin and serum enzymes. Scand J Clin Lab Invest 73:361–367

    Article  PubMed  Google Scholar 

  17. Morgera S, Neumayer HH, Fritsche L, Kuchinke S, Lampe D, Ahnert V, Bauer S, Mai I, Budde K (1998) Pharmacokinetics of mycophenolate mofetil in renal transplant recipients on peritoneal dialysis. Int J Clin Pharmacol Ther 36:159–163

    CAS  PubMed  Google Scholar 

  18. Bullingham RE, Nicholls AJ, Kamm BR (1998) Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 34:429–455

    Article  CAS  PubMed  Google Scholar 

  19. Naesens M, de Loor H, Vanrenterghem Y, Kuypers DR (2007) The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation 84:362–373

    Article  CAS  PubMed  Google Scholar 

  20. Filler G, Vinks AA, Huang SH, Jevnikar A, Muirhead N (2014) Similar MPA exposure on modified release and regular tacrolimus. Ther Drug Monit 36:353–357

    Article  CAS  PubMed  Google Scholar 

  21. Filler G (2011) Challenges in pediatric transplantation: the impact of chronic kidney disease and cardiovascular risk factors on long-term outcomes and recommended management strategies. Pediatr Transplant 15:25–31

    Article  PubMed  Google Scholar 

  22. Musuamba FT, Mourad M, Haufroid V, Demeyer M, Capron A, Delattre IK, Delaruelle F, Wallemacq P, Verbeeck RK (2012) A simultaneous d-optimal designed study for population pharmacokinetic analyses of mycophenolic Acid and tacrolimus early after renal transplantation. J Clin Pharmacol 52:1833–1843

    Article  CAS  PubMed  Google Scholar 

  23. Reinken L, Droese W, Stolley H, van Oost G (1979) Concentrations of hemoglobin, hematocrit and serum iron in healthy infants and children aged 1 month to 16 years (author’s transl). Monatsschr Kinderheilkd 127:628–634

    CAS  PubMed  Google Scholar 

  24. Chenhsu RY, Wu YM, Min DI, Zimmerman MB (2002) Effects of mycophenolate mofetil on hematocrit after renal transplantation. Ann Pharmacother 36:1479–1480

    Article  PubMed  Google Scholar 

  25. Winkelmayer WC, Kewalramani R, Rutstein M, Gabardi S, Vonvisger T, Chandraker A (2004) Pharmacoepidemiology of anemia in kidney transplant recipients. J Am Soc Nephrol 15:1347–1352

    Article  PubMed  Google Scholar 

  26. Wong H, Mylrea K, Feber J, Drukker A, Filler G (2006) Prevalence of complications in children with chronic kidney disease according to KDOQI. Kidney Int 70:585–590

    Article  CAS  PubMed  Google Scholar 

  27. Feber J, Wong H, Geier P, Chaudry B, Filler G (2008) Complications of chronic kidney disease in children post-renal transplantation - a single center experience. Pediatr Transplant 12:80–84

    Article  PubMed  Google Scholar 

  28. Yatscoff RW, Keenan R, LeGatt DF (1993) Single-dose pharmacokinetics of the new immunosuppressant RS-61443 in the rabbit. Ther Drug Monit 15:400–404

    Article  CAS  PubMed  Google Scholar 

  29. Zhao W, Elie V, Baudouin V, Bensman A, Andre JL, Brochard K, Broux F, Cailliez M, Loirat C, Jacqz-Aigrain E (2010) Population pharmacokinetics and Bayesian estimator of mycophenolic acid in children with idiopathic nephrotic syndrome. Br J Clin Pharmacol 69:358–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, Ellis EN, James LP, Ward RM, Vinks AA (2012) UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit 34:671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao W, Fakhoury M, Deschenes G, Roussey G, Brochard K, Niaudet P, Tsimaratos M, Andre JL, Cloarec S, Cochat P, Bensman A, Azougagh S, Jacqz-Aigrain E (2010) Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol 50:1280–1291

    Article  CAS  PubMed  Google Scholar 

  32. Filler G (2004) Abbreviated mycophenolic acid AUC from C0, C1, C2, and C4 is preferable in children after renal transplantation on mycophenolate mofetil and tacrolimus therapy. Transpl Int 17:120–125

    CAS  PubMed  Google Scholar 

  33. Filler G, Todorova EK, Bax K, Alvarez-Elias AC, Huang SS, Kobrzynski MC (2015) Minimum mycophenolic acid levels are associated with donor-specific antibody formation. Pediatr Transplant. doi:10.1111/petr.12637

    Google Scholar 

  34. Budde K, Glander P, Bauer S, Braun K, Waiser J, Fritsche L, Mai I, Roots I, Neumayer HH (2000) Pharmacodynamic monitoring of mycophenolate mofetil. Clin Chem Lab Med 38:1213–1216

    Article  CAS  PubMed  Google Scholar 

  35. Langman LJ, LeGatt DF, Yatscoff RW (1995) Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression by measuring IMP dehydrogenase activity. Clin Chem 41:295–299

    CAS  PubMed  Google Scholar 

  36. Li Y, Li G, Gorling B, Luy B, Du J, Yan J (2015) Integrative analysis of circadian transcriptome and metabolic network reveals the role of de novo purine synthesis in circadian control of cell cycle. PLoS Comput Biol. doi:10.1371/journal.pcbi.1004086, eCollection 2015

    Google Scholar 

  37. Fukuda T, Goebel J, Thogersen H, Maseck D, Cox S, Logan B, Sherbotie J, Seikaly M, Vinks AA (2011) Inosine monophosphate dehydrogenase (IMPDH) activity as a pharmacodynamic biomarker of mycophenolic acid effects in pediatric kidney transplant recipients. J Clin Pharmacol 51:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bunchman T, Navarro M, Broyer M, Sherbotie J, Chavers B, Tonshoff B, Birk P, Lerner G, Lirenman D, Greenbaum L, Walker R, Zimmerhackl LB, Blowey D, Clark G, Ettenger R, Arterburn S, Klamerus K, Fong A, Tang H, Thomas S, Ramos E (2001) The use of mycophenolate mofetil suspension in pediatric renal allograft recipients. Pediatr Nephrol 16:978–984

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

ECY and EKT collected the data and prepared the final data for analysis. ECY, ACAE, and GF wrote the first draft and coordinated the paper writing. ACAE performed the statistical analysis. EKT participated in draft writing, analysis, and interpretation of data. All authors participated in draft writing, and critical review of the manuscript. GF conceived the study, was involved in all aspects of the paper generation, helped with the statistical analysis, and coordinated all coauthors’ activities. All authors participated in revising the manuscript critically for important intellectual content and approved the final version to be submitted to the journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Filler.

Ethics declarations

Ethical approval

The study has been approved by the appropriate ethics committee and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. The ethics board explicitly waived the requirement for informed written consent because there are no guidelines for how MPA levels are to be used in the clinical setting and the study should not alter current patient care.

Conflict of interest

All authors had no relationships or circumstances that present a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, E.C., Alvarez-Elías, A.C., Todorova, E.K. et al. Developmental changes of MPA exposure in children. Pediatr Nephrol 31, 975–982 (2016). https://doi.org/10.1007/s00467-015-3303-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3303-3

Keywords

Navigation