Skip to main content
Log in

The interplay between drugs and the kidney in premature neonates

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The kidney plays a central role in the clearance of drugs. However, renal drug handling entails more than glomerular filtration and includes tubular excretion and reabsorption, and intracellular metabolization by cellular enzyme systems, such as the Cytochrome P450 isoenzymes. All these processes show maturation from birth onwards, which is one of the reasons why drug dosing in children is not simply similar to dosing in small adults. As kidney development normally finishes around the 36th week of gestation, being born prematurely will result in even more immature renal drug handling. Environmental effects, such as extra-uterine growth restriction, sepsis, asphyxia, or drug treatments like caffeine, aminoglycosides, or non-steroidal anti-inflammatory drugs, may further hamper drug handling in the kidney. Dosing in preterm neonates is therefore dependent on many factors that need to be taken into account. Drug treatment may significantly hamper postnatal kidney development in preterm neonates, just like renal immaturity has an impact on drug handling. The restricted kidney development results in a lower number of nephrons that may have several long-term sequelae, such as hypertension, albuminuria, and renal failure. This review focuses on the interplay between drugs and the kidney in premature neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen N, Aleksa K, Woodland C, Rieder M, Koren G (2006) Ontogeny of drug elimination by the human kidney. Pediatr Nephrol 21:160–168

    Article  PubMed  Google Scholar 

  2. Alcorn J, McNamara PJ (2002) Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet 41:959–998

    Article  PubMed  CAS  Google Scholar 

  3. van den Anker JN, Schwab M, Kearns GL (2011) Developmental pharmacokinetics. Handb Exp Pharmacol 205:51–75

    Article  PubMed  Google Scholar 

  4. Cuzzolin L, Fanos V, Pinna B, di Marzio M, Perin M, Tramontozzi P, Tonetto P, Cataldi L (2006) Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol 21:931–938

    Article  PubMed  Google Scholar 

  5. Ashley C, Currie A (2009) The renal drug handbook. Radcliffe, Oxford

    Google Scholar 

  6. De Gregori S, De Gregori M, Ranzani GN, Borghesi A, Regazzi M, Stronati M (2009) Drug transporters and renal drug disposition in the newborn. J Matern Fetal Neonatal Med 22(Suppl 3):31–37

    Article  PubMed  Google Scholar 

  7. Burckhardt G (2012) Drug transport by organic anion transporters (OATs). Pharmacol Ther 136:106–130

    Article  PubMed  CAS  Google Scholar 

  8. Marques-Minana MR, Saadeddin A, Peris JE (2010) Population pharmacokinetic analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol 70:713–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Urakami Y, Kimura N, Okuda M, Inui K (2004) Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 21:976–981

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843

    Article  PubMed  Google Scholar 

  11. Delanaye P, Mariat C, Cavalier E, Maillard N, Krzesinski JM, White CA (2011) Trimethoprim, creatinine and creatinine-based equations. Nephron Clin Pract 119:c187–193, discussion c193-184

    Article  PubMed  CAS  Google Scholar 

  12. Aleksa K, Matsell D, Krausz K, Gelboin H, Ito S, Koren G (2005) Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr Nephrol 20:872–885

    Article  PubMed  Google Scholar 

  13. de Wildt SN, Kearns GL, Hop WC, Murry DJ, Abdel-Rahman SM, van den Anker JN (2001) Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther 70:525–531

    Article  PubMed  Google Scholar 

  14. Johnson TN, Rostami-Hodjegan A, Goddard JM, Tanner MS, Tucker GT (2002) Contribution of midazolam and its 1-hydroxy metabolite to preoperative sedation in children: a pharmacokinetic-pharmacodynamic analysis. Br J Anaesth 89:428–437

    Article  PubMed  CAS  Google Scholar 

  15. de Wildt SN, Kearns GL, Murry DJ, Koren G, van den Anker JN (2010) Ontogeny of midazolam glucuronidation in preterm infants. Eur J Clin Pharmacol 66:165–170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Anderson BJ, Larsson P (2011) A maturation model for midazolam clearance. Paediatr Anaesth 21:302–308

    Article  PubMed  Google Scholar 

  17. Allegaert K, Rochette A, Veyckemans F (2011) Developmental pharmacology of tramadol during infancy: ontogeny, pharmacogenetics and elimination clearance. Paediatr Anaesth 21:266–273

    Article  PubMed  Google Scholar 

  18. Quaggin SE, Kreidberg J (2008) Embryology of the kidney. In: Brenner BM (ed) Brenner and Rector’s the kidney. Saunders, Elsevier, Philadelphia, pp 3–24

    Google Scholar 

  19. Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, Fanos V (2012) Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol 227:1257–1268

    Article  PubMed  CAS  Google Scholar 

  20. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533

    Article  PubMed  Google Scholar 

  21. Schreuder MF (2012) Safety in glomerular numbers. Pediatr Nephrol 27:1881–1887

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brownfoot FC, Crowther CA, Middleton P (2008) Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev:CD006764

  23. Singh RR, Moritz KM, Bertram JF, Cullen-McEwen LA (2007) Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies. Am J Physiol Renal Physiol 293:F548–554

    Article  PubMed  CAS  Google Scholar 

  24. Seckl JR, Cleasby M, Nyirenda MJ (2000) Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int 57:1412–1417

    Article  PubMed  CAS  Google Scholar 

  25. Guron G, Marcussen N, Nilsson A, Sundelin B, Friberg P (1999) Postnatal time frame for renal vulnerability to enalapril in rats. J Am Soc Nephrol 10:1550–1560

    PubMed  CAS  Google Scholar 

  26. Gubler MC (2013) Renal tubular dysgenesis. Pediatr Nephrol. doi:10.1007/s00467-013-2480-1

    PubMed  Google Scholar 

  27. Abramovici A, Cantu J, Jenkins SM (2012) Tocolytic therapy for acute preterm labor. Obstet Gynecol Clin North Am 39:77–87

    Article  PubMed  Google Scholar 

  28. Kent AL, Maxwell LE, Koina ME, Falk MC, Willenborg D, Dahlstrom JE (2007) Renal glomeruli and tubular injury following indomethacin, ibuprofen, and gentamicin exposure in a neonatal rat model. Pediatr Res 62:307–312

    Article  PubMed  CAS  Google Scholar 

  29. Sutherland MR, Yoder BA, McCurnin D, Seidner S, Gubhaju L, Clyman RI, Black MJ (2012) Effects of ibuprofen treatment on the developing preterm baboon kidney. Am J Physiol Renal Physiol 302:F1286–1292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, Hoy WE, Bertram JF, Black MJ (2011) Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol 22:1365–1374

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rodriguez MM, Gomez A, Abitbol C, Chandar J, Montane B, Zilleruelo G (2005) Comparative renal histomorphometry: a case study of oligonephropathy of prematurity. Pediatr Nephrol 20:945–949

    Article  PubMed  Google Scholar 

  32. Faa G, Gerosa C, Fanni D, Nemolato S, Locci A, Cabras T, Marinelli V, Puddu M, Zaffanello M, Monga G, Fanos V (2010) Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J Matern Fetal Neonatal Med 23(Suppl 3):129–133

    Article  PubMed  Google Scholar 

  33. De Curtis M, Rigo J (2004) Extrauterine growth restriction in very-low-birthweight infants. Acta Paediatr 93:1563–1568

    Article  PubMed  Google Scholar 

  34. Schreuder MF, Nyengaard JR, Remmers F, van Wijk JA, D-vdW HA (2006) Postnatal food restriction in the rat as a model for a low nephron endowment. Am J Physiol Renal Physiol 291:F1104–F1107

    Article  PubMed  CAS  Google Scholar 

  35. Sutherland MR, O’Reilly M, Kenna K, Ong K, Harding R, Sozo F, Black MJ (2013) Neonatal hyperoxia: effects on nephrogenesis and long-term glomerular structure. Am J Physiol Renal Physiol 304:F1308–1316

    Article  PubMed  CAS  Google Scholar 

  36. Tolba AM, Hewedy FM, al-Senaidy AM, al-Othman AA (1998) Neonates’ vitamin A status in relation to birth weight, gestational age, and sex. J Trop Pediatr 44:174–177

    Article  PubMed  CAS  Google Scholar 

  37. Darlow BA, Graham PJ (2011) Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev:CD000501

  38. Kandasamy Y, Smith R, Wright IM, Lumbers ER (2013) Extra-uterine renal growth in preterm infants: Oligonephropathy and prematurity. Pediatr Nephrol 28:1791–1796

    Article  PubMed  PubMed Central  Google Scholar 

  39. Toth-Heyn P, Drukker A, Guignard JP (2000) The stressed neonatal kidney: from pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr Nephrol 14:227–239

    Article  PubMed  CAS  Google Scholar 

  40. Osswald H, Schnermann J (2011) Methylxanthines and the kidney. Handb Exp Pharmacol 200:391–412

  41. Francart SJ, Allen MK, Stegall-Zanation J (2013) Apnea of prematurity: caffeine dose optimization. J Pediatr Pharmacol Ther 18:45–52

    PubMed  PubMed Central  Google Scholar 

  42. Ohlsson A, Walia R, Shah SS (2013) Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev 4, CD003481

    PubMed  Google Scholar 

  43. Filler GM (2011) The challenges of assessing acute kidney injury in infants. Kidney Int 80:567–568

    Article  PubMed  Google Scholar 

  44. Rubin MI, Bruck E, Rapoport M (1949) Maturation of renal function in childhood; clearance studies. J Clin Invest 28:1144–1162

    Article  CAS  PubMed Central  Google Scholar 

  45. Hayton WL (2000) Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci 2:E3

    PubMed  CAS  Google Scholar 

  46. Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F (2010) Glomerular filtration rate reference values in very preterm infants. Pediatrics 125:e1186–1192

    Article  PubMed  Google Scholar 

  47. Aperia A, Broberger O, Elinder G, Herin P, Zetterstrom R (1981) Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand 70:183–187

    Article  PubMed  CAS  Google Scholar 

  48. Vanpee M, Blennow M, Linne T, Herin P, Aperia A (1992) Renal function in very low birth weight infants: normal maturity reached during early childhood. J Pediatr 121:784–788

    Article  PubMed  CAS  Google Scholar 

  49. George I, Mekahli D, Rayyan M, Levtchenko E, Allegaert K (2011) Postnatal trends in creatinemia and its covariates in extremely low birth weight (ELBW) neonates. Pediatr Nephrol 26:1843–1849

    Article  PubMed  Google Scholar 

  50. Kuppens M, George I, Lewi L, Levtchenko E, Allegaert K (2012) Creatinaemia at birth is equal to maternal creatinaemia at delivery: does this paradigm still hold? J Matern Fetal Neonatal Med 25:978–980

    Article  PubMed  Google Scholar 

  51. Filler G, Lepage N (2013) Cystatin C adaptation in the first month of life. Pediatr Nephrol 28:991–994

    Article  PubMed  Google Scholar 

  52. van den Anker JN, de Groot R, Broerse HM, Sauer PJ, van der Heijden BJ, Hop WC, Lindemans J (1995) Assessment of glomerular filtration rate in preterm infants by serum creatinine: comparison with inulin clearance. Pediatrics 96:1156–1158

    PubMed  Google Scholar 

  53. Matos P, Duarte-Silva M, Drukker A, Guignard JP (1998) Creatinine reabsorption by the newborn rabbit kidney. Pediatr Res 44:639–641

    Article  PubMed  CAS  Google Scholar 

  54. Bauer K, Versmold H (1989) Postnatal weight loss in preterm neonates less than 1,500 g is due to isotonic dehydration of the extracellular volume. Acta Paediatr Scand Suppl 360:37–42

    Article  PubMed  CAS  Google Scholar 

  55. Leslie GI, Arnold JD, Gyory AZ (1991) Postnatal changes in proximal and distal tubular sodium reabsorption in healthy very-low-birth-weight infants. Biol Neonate 60:108–113

    Article  PubMed  CAS  Google Scholar 

  56. Quigley R, Baum M (2004) Neonatal acid base balance and disturbances. Semin Perinatol 28:97–102

    Article  PubMed  Google Scholar 

  57. Wilkins BH (1992) Renal function in sick very low birthweight infants: 4. Glucose excretion. Arch Dis Child 67:1162–1165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Quigley R (2012) Developmental changes in renal function. Curr Opin Pediatr 24:184–190

    Article  PubMed  Google Scholar 

  59. Sweet DH, Bush KT, Nigam SK (2001) The organic anion transporter family: from physiology to ontogeny and the clinic. Am J Physiol Renal Physiol 281:F197–205

    PubMed  CAS  Google Scholar 

  60. Sweeney DE, Vallon V, Rieg T, Wu W, Gallegos TF, Nigam SK (2011) Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol Pharmacol 80:147–154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Stewart CF, Hampton EM (1987) Effect of maturation on drug disposition in pediatric patients. Clin Pharm 6:548–564

    PubMed  CAS  Google Scholar 

  62. Stichting Perinatale Registratie Nederland (2008) Perinatale Zorg in Nederland 2005. Stichting Perinatale Registratie Nederland, Utrecht

  63. De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, Danhof M, Knibbe CA (2012) Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet 51:105–117

    Article  PubMed  Google Scholar 

  64. Abdulhamid I, Wise TL, Andrews S, Biglin K, Lehr VT (2008) Elevated serum tobramycin concentrations after treatment with tobramycin inhalation in a preterm infant. Pharmacotherapy 28:939–944

    Article  PubMed  CAS  Google Scholar 

  65. Pacifici GM, Allegaert K (2012) Clinical pharmacokinetics of vancomycin in the neonate: a review. Clinics (Sao Paulo) 67:831–837

    Article  Google Scholar 

  66. Pacifici GM (2011) Pharmacokinetics of cephalosporins in the neonate: a review. Clinics (Sao Paulo) 66:1267–1274

    Article  Google Scholar 

  67. Fanos V, Cataldi L (1999) Antibacterial-induced nephrotoxicity in the newborn. Drug Saf 20:245–267

    Article  PubMed  CAS  Google Scholar 

  68. Langer J, Obladen M, Dame C (2008) Urinary loss of erythropoietin after intravenous versus subcutaneous epoetin-beta in preterm infants. J Pediatr 152:728–730

    Article  PubMed  CAS  Google Scholar 

  69. Yanni SB, Smith PB, Benjamin DK Jr, Augustijns PF, Thakker DR, Annaert PP (2011) Higher clearance of micafungin in neonates compared with adults: role of age-dependent micafungin serum binding. Biopharm Drug Dispos 32:222–232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Pullen J, Stolk LM, Degraeuwe PL, van Tiel FH, Neef C, Zimmermann LJ (2007) Protein binding of flucloxacillin in neonates. Ther Drug Monit 29:279–283

    Article  PubMed  CAS  Google Scholar 

  71. Elmas AT, Tabel Y, Elmas ON (2013) Serum cystatin C predicts acute kidney injury in preterm neonates with respiratory distress syndrome. Pediatr Nephrol 28:477–484

    Article  PubMed  Google Scholar 

  72. Sarafidis K, Tsepkentzi E, Agakidou E, Diamanti E, Taparkou A, Soubasi V, Papachristou F, Drossou V (2012) Serum and urine acute kidney injury biomarkers in asphyxiated neonates. Pediatr Nephrol 27:1575–1582

    Article  PubMed  Google Scholar 

  73. Mark LF, Solomon A, Northington FJ, Lee CK (2013) Gentamicin pharmacokinetics in neonates undergoing therapeutic hypothermia. Ther Drug Monit 35:217–222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Liu X, Borooah M, Stone J, Chakkarapani E, Thoresen M (2009) Serum gentamicin concentrations in encephalopathic infants are not affected by therapeutic hypothermia. Pediatrics 124:310–315

    Article  PubMed  Google Scholar 

  75. Satas S, Hoem NO, Melby K, Porter H, Lindgren CG, Whitelaw A, Thoresen M (2000) Influence of mild hypothermia after hypoxia-ischemia on the pharmacokinetics of gentamicin in newborn pigs. Biol Neonate 77:50–57

    Article  PubMed  CAS  Google Scholar 

  76. Walker MW, Clark RH, Spitzer AR (2011) Elevation in plasma creatinine and renal failure in premature neonates without major anomalies: terminology, occurrence and factors associated with increased risk. J Perinatol 31:199–205

    Article  PubMed  CAS  Google Scholar 

  77. Kandasamy Y, Smith R, Wright IM (2013) Measuring cystatin C to determine renal function in neonates. Pediatr Crit Care Med 14:318–322

    Article  PubMed  Google Scholar 

  78. Adam MP, Polifka JE, Friedman JM (2011) Evolving knowledge of the teratogenicity of medications in human pregnancy. Am J Med Genet C: Semin Med Genet 157:175–182

    Article  Google Scholar 

  79. Schreuder MF, Bueters RR, Huigen MC, Russel FG, Masereeuw R, van den Heuvel LP (2011) Effect of drugs on renal development. Clin J Am Soc Nephrol 6:212–217

    Article  PubMed  CAS  Google Scholar 

  80. Gilbert T, Lelievre-Pegorier M, Malienou R, Meulemans A, Merlet-Benichou C (1987) Effects of prenatal and postnatal exposure to gentamicin on renal differentiation in the rat. Toxicology 43:301–313

    Article  PubMed  CAS  Google Scholar 

  81. Gilbert T, Nabarra B, Merlet-Benichou C (1988) Light- and electron-microscopic analysis of the kidney in newborn rats exposed to gentamicin in utero. Am J Pathol 130:33–43

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Giapros VI, Papadimitriou FK, Andronikou SK (2007) Tubular disorders in low birth weight neonates after prolonged antibiotic treatment. Neonatology 91:140–144

    Article  PubMed  Google Scholar 

  83. Turcu R, Patterson MJ, Omar S (2009) Influence of sodium intake on Amphotericin B-induced nephrotoxicity among extremely premature infants. Pediatr Nephrol 24:497–505

    Article  PubMed  Google Scholar 

  84. Bagnoli F, Rossetti A, Messina G, Mori A, Casucci M, Tomasini B (2013) Treatment of patent ductus arteriosus (PDA) using ibuprofen: renal side-effects in VLBW and ELBW newborns. J Matern Fetal Neonatal Med 26:423–429

    Article  PubMed  CAS  Google Scholar 

  85. Vieux R, Fresson J, Guillemin F, Hascoet JM (2011) Perinatal drug exposure and renal function in very preterm infants. Arch Dis Child Fetal Neonatal Ed 96:F290–295

    Article  PubMed  CAS  Google Scholar 

  86. Allegaert K (2009) The impact of ibuprofen or indomethacin on renal drug clearance in neonates. J Matern Fetal Neonatal Med 22(Suppl 3):88–91

    Article  PubMed  CAS  Google Scholar 

  87. McPherson C, Gal P, Ransom JL, Carlos RQ, Dimaguila MA, Smith M, Davonzo C, Wimmer JE Jr (2010) Indomethacin pharmacodynamics are altered by surfactant: a possible challenge to current indomethacin dosing guidelines created before surfactant availability. Pediatr Cardiol 31:505–510

    Article  PubMed  Google Scholar 

  88. Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777

    Article  PubMed  CAS  Google Scholar 

  89. Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Article  PubMed  Google Scholar 

  90. Orskov B, Christensen KB, Feldt-Rasmussen B, Strandgaard S (2012) Low birth weight is associated with earlier onset of end-stage renal disease in Danish patients with autosomal dominant polycystic kidney disease. Kidney Int 81:919–924

    Article  PubMed  CAS  Google Scholar 

  91. Keijzer-Veen MG, Finken MJ, Nauta J, Dekker FW, Hille ET, Frolich M, Wit JM, van der Heijden AJ (2005) Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in The Netherlands. Pediatrics 116:725–731

    Article  PubMed  Google Scholar 

  92. Keijzer-Veen MG, Schrevel M, Finken MJ, Dekker FW, Nauta J, Hille ET, Frolich M, van der Heijden BJ (2005) Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J Am Soc Nephrol 16:2762–2768

    Article  PubMed  CAS  Google Scholar 

  93. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261

    Article  PubMed  Google Scholar 

  94. Silverwood RJ, Pierce M, Hardy R, Sattar N, Whincup P, Ferro C, Savage C, Kuh D, Nitsch D (2013) Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int. doi:10.1038/ki.2013.223

    PubMed  PubMed Central  Google Scholar 

  95. Silverwood RJ, Pierce M, Hardy R, Thomas C, Ferro C, Savage C, Sattar N, Kuh D, Nitsch D, National Survey of H, Development S, Data Collection T (2013) Early-life overweight trajectory and CKD in the 1946 British birth cohort study. Am J Kidney Dis 62:276–284

    Google Scholar 

  96. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW (2012) Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 8:293–300

    Article  PubMed  CAS  Google Scholar 

  97. Antonucci R, Pilloni MD, Atzori L, Fanos V (2012) Pharmaceutical research and metabolomics in the newborn. J Matern Fetal Neonatal Med 25:22–26

    Article  PubMed  CAS  Google Scholar 

  98. Hanna MH, Segar JL, Teesch LM, Kasper DC, Schaefer FS, Brophy PD (2013) Urinary metabolomic markers of aminoglycoside nephrotoxicity in newborn rats. Pediatr Res 73:585–591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Hallynck T, Soep HH, Thomis J, Boelaert J, Daneels R, Fillastre JP, De Rosa F, Rubinstein E, Hatala M, Spousta J, Dettli L (1981) Prediction of creatinine clearance from serum creatinine concentration based on lean body mass. Clin Pharmacol Ther 30:414–421

    Article  PubMed  CAS  Google Scholar 

  100. Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NH (2007) Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol 63:75–84

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Bradley JS, Sauberan JB, Ambrose PG, Bhavnani SM, Rasmussen MR, Capparelli EV (2008) Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr Infect Dis J 27:794–799

    Article  PubMed  Google Scholar 

  102. Delattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, Jacobs F, Wallemacq P (2012) Population pharmacokinetics of four beta-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem 45:780–786

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MFS is supported by the Dutch Kidney Foundation (KJPB.08.06). KA is supported by the Fund for Scientific Research, Flanders (Belgium) (FWO Vlaanderen, 1800214 N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel F Schreuder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreuder, M.F., Bueters, R.R.G. & Allegaert, K. The interplay between drugs and the kidney in premature neonates. Pediatr Nephrol 29, 2083–2091 (2014). https://doi.org/10.1007/s00467-013-2651-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2651-0

Keywords

Navigation