Skip to main content

Advertisement

Log in

Ontogeny of drug elimination by the human kidney

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Renal clearance is an important route of drug elimination. While during the neonatal period there is minimal glomerular filtration and active tubular secretion of drugs, there is a well-described rapid development in these processes in the post-neonatal period. A less appreciated fact is that during toddlerhood, there is an “overshoot” of the glomerular filtration rate (GFR) well above the levels encountered in older children and adults, and there is an early achievement of adult levels in active drug secretion, which stays at a plateau throughout childhood and adulthood with an “overshoot” in toddlers due to specific transport mechanisms. This phenomenon leads to dose requirements for renally excreted drugs in this age group being, on a per-kilogram basis, much larger than in adults. This review discusses the mechanisms related to renal ontogeny in drug handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jungbluth GL, Welshman IR, Hopkins NK (2003) Linezolid pharmacokinetics in pediatric patients: an overview. Pediatr Infect Dis J 22:S153–157

    PubMed  Google Scholar 

  2. Kearns GL, Jungbluth GL, Abdel-Rahman SM, Hopkins NK, Welshman IR, Grzebyk RP, Bruss JB, Van Den Anker JN; Pediatric Pharmacology Research Unit Network (2003) Impact of ontogeny on linezolid disposition in neonates and infants. Clin Pharmacol Ther 74:413–422

    Article  PubMed  Google Scholar 

  3. Yaffe, SJ, Aranda JV, Kauffman RE (2005) Neonatal and pediatric pharmacology: therapeutic principles in practice, 3rd edn, chapter 3. Lippincott Williams & Wilkins, Philadelphia, pp 20–31

    Google Scholar 

  4. Solhaug MJ, Bolger PM, Jose PA (2004) The developing kidney and environmental toxins. Pediatrics 113:1084–1091

    PubMed  Google Scholar 

  5. Akaoka K, White RH, Raafat F (1994) Human glomerular growth during childhood: A morphometric study. J Pathol 173:261–268

    Article  PubMed  Google Scholar 

  6. Goyal VK (1982) Changes with age in the human kidney. Exp Gerontol 17:321–331

    Article  PubMed  Google Scholar 

  7. Akaoka K, White RH, Raafat F (1995) Glomerular morphometry in childhood reflux nephropathy, emphasizing the capillary changes. Kidney Int 47:1108–1114

    PubMed  Google Scholar 

  8. Li M, Nicholls KM, Becker GJ (2002) Glomerular size and global glomerulosclerosis in normal Caucasian donor kidneys: effects of aging and gender. J Nephrol 15:614–619

    PubMed  Google Scholar 

  9. Yaffe, SJ, Aranda JV, Anker van den JN (2005) Neonatal and pediatric pharmacology: therapeutic principles in practice, 3rd edn, chapter 15. Lippincott Williams Wilkins, Philadelphia, pp 172–186

    Google Scholar 

  10. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  PubMed  Google Scholar 

  11. Fleming JS, Persaud L, Zivanovic MA (2005) A general equation for estimating glomerular filtration rate from a single plasma sample. Nucl Med Commun 26:743–748

    Article  PubMed  Google Scholar 

  12. Leger F, Bouissou F, Coulais Y, Tafani M, Chatelut E (2002) Estimation of glomerular filtration rate in children. Pediatr Nephrol 17:903–907

    Article  PubMed  Google Scholar 

  13. Hellerstein S, Berenbom M, Erwin P, Wilson N, DiMaggio S (2004) Measurement of renal functional reserve in children. Pediatr Nephrol 19:1132–1136

    PubMed  Google Scholar 

  14. Bardi E, Bobok I, Olah AV, Olah E, Kappelmayer J, Kiss C (2004) Cystatin C is a suitable marker of glomerular function in children with cancer. Pediatr Nephrol 19:1145–1147

    PubMed  Google Scholar 

  15. Hayton WL (2000) Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci 2:1–7

    Article  Google Scholar 

  16. Rubin M, Bruck E, Rappoport M (1949) Maturation of renal function in childhood: clearance studies. J Clin Invest 28:1144–1162

    Google Scholar 

  17. Smith WW, Finkelstein N, Smith HW (1940) Renal excretion of hexitols and their derivatives and of endogenous creatinine-like chromogen in dog and man. J Biol Chem 135:231–250

    Google Scholar 

  18. Sweet DH, Bush KT, Nigam SK (2001) The organic anion transporter family: from physiology to ontogeny and the clinic. Am J Renal Physiol 281:F197–F205

    Google Scholar 

  19. Hook JB, Hewitt WR (1977) Development of mechanisms for drug excretion. Am J Med 62:497–506

    Article  PubMed  Google Scholar 

  20. Ruth EB (1935) Metamorphosis of the pubic symphysis. I. The white rat ( Mus norvegicus albinus). Anat Rec 64:1–7

    Article  Google Scholar 

  21. Dutt A, Priebe TS, Teeter LD, Kuo MT, Nelson JA (1992) Postnatal development of organic cation transport and mdr gene expression in mouse kidney. J Pharmacol Exp Ther 261:1222–1230

    PubMed  Google Scholar 

  22. Pinto N, Halachmi N, Woodland C, Koren G (2004) Ontogeny of renal P-glycoprotein expression in mice: implications for pediatric dosing. Clin Pharmacol Ther 75:25 http://www.ascpt.org/press/2004/2004Abstracts.pdf

    Google Scholar 

  23. Rosati A, Maniori S, Decorti G, Candussio L, Giraldi T, Bartoli F (2003) Physiological regulation of P-glycoprotein, MRP1, MRP2 and Cytochrome P450 3A2 during rat ontogeny. Dev Growth Differ 45:377–387

    Article  PubMed  Google Scholar 

  24. Marchi AG, Messi G, Loschi L (1991) Evaluation of changing patterns in children poisonings and prevention. Vet Hum Toxicol 33:244–246

    PubMed  Google Scholar 

  25. Litovitz TL, Flagler SL, Manoguerra AS, Veltri JC, Wright L (1989) Recurrent poisonings among paediatric poisoning victims. Med Toxicol Adverse Drug Exp 4:381–386

    PubMed  Google Scholar 

  26. Anders MW (1980) Metabolism of drugs by the kidney. Kidney Int 18:636–647

    PubMed  Google Scholar 

  27. Daugaard G, Abildgaard U, Larsen S, Holstein-Rathlou NH, Amtorp O, Olesen HP, Leyssac PP (1987) Functional and histopathological changes in dog kidneys after administration of cisplatin. Renal Physiol 10:54–64

    PubMed  Google Scholar 

  28. Rossi RM, Kist C, Wurster U, Kulpmann WR, Ehrich JH (1994) Estimation of ifosfamide/cisplatinum-induced renal toxicity by urinary protein analysis. Pediatr Nephrol 8:151–156

    Article  PubMed  Google Scholar 

  29. Shore R, Greenberg M, Geary D, Koren G (1992) Iphosphamide-induced nephrotoxicity in children. Pediatr Nephrol 6:162–165

    Article  PubMed  Google Scholar 

  30. Skinner R, Pearson AD, Price L, Coulthard MG, Craft AW (1992) The influence of age on nephrotoxicity following chemotherapy in children. Br J Cancer [Suppl] 18:S30–35

    Google Scholar 

  31. Skinner R, Pearson AD, Price L, Coulthard MG, Craft AW (1990) Nephrotoxicity after ifosfamide. Arch Dis Child 65:732–738

    PubMed  Google Scholar 

  32. Aleksa K, Halachmi N, Ito S, Koren G (2004) Renal ontogeny of ifosfamide nephrotoxicity. J Lab Clin Med 144:285–293

    Article  PubMed  Google Scholar 

  33. Hoyer AF (1989) Optimal use of cyclosporine A in children. Pediatr Nephrol 3:C85–90

    Google Scholar 

  34. Termeer A, Hoitsma AJ, Koene RA (1986) Severe nephrotoxicity caused by the combined use of gentamicin and cyclosporine in renal allograft recipients. Transplantation 42:220–221

    PubMed  Google Scholar 

  35. Blowey DL, Ben-David S, Koren G (1995) Interactions of drugs with the developing kidney. Pediatr Clin North Am 42:1415–1431

    PubMed  Google Scholar 

  36. Clive DM, Stoff JS (1984) Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med 310:563–572

    PubMed  Google Scholar 

  37. Goldstein RS, Hook JB (1992) Biochemical mechanisms of nephrotoxicity. In: Edelmann CM Jr (ed) Pediatric kidney disease, 2nd edn. Little, Brown and Company, Boston, p 417

  38. Nielsen TW, Maaske CA, Booth NH (1969) Some comparative aspects of porcine renal function. In: Bustad LK, McClellan RO (eds) Swine in biomedical research. Pacific Northwest Laboratory, Seattle, pp 529–536

  39. Friis C (1983) Renal excretion of drugs during postnatal development in piglets. Vet Res Commun 7:349–52

    Article  PubMed  Google Scholar 

  40. Friis C (1980) Postnatal development of the pig kidney: ultrastucure of the glomerulus and the proximal tubule. J Anat 130:513–526

    PubMed  Google Scholar 

  41. Soucek P, Zuber R, Anzenbacherova E, Anzenbacher P, Guengerich FP (2001) Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs. BMC Pharmacol 1:11–15

    Article  PubMed  Google Scholar 

  42. Potter D, Jarrah A, Sakai T, Harrah J, Holliday MA (1969) Character of function and size in kidney during normal growth of rats. Pediatr Res 3:51–59

    PubMed  Google Scholar 

  43. Solomon S (1977) Developmental changes in nephron number, proximal tubular length and superficial nephron glomerular filtration rate of rats. J Physiol 272:573–589

    PubMed  Google Scholar 

  44. Bonvalet JP, Champion M, Wanstok F, Berjal G (1972) Compensatory renal hypertrophy in young rats: Increase in the number of nephrons. Kidney Int 1:391–396

    PubMed  Google Scholar 

  45. Horster M, Lewy JE (1970) Filtration fraction and extraction of PAH during neonatal period in the rat. Am J Physiol 21:1061–1065

    Google Scholar 

  46. Chamaa NS, Mosig D, Drukker A, Guignard JP (2000) The renal hemodynamic effects of ibuprofen in the newborn rabbit. Pediatr Res 48:600–605

    PubMed  Google Scholar 

  47. Drukker A, Mosig D, Guignard JP (2001) The renal hemodynamic effects of aspirin in newborn and young adult rabbits. Pediatr Nephrol 16:713–718

    Article  PubMed  Google Scholar 

  48. Ballevre L, Thonney M, Guignard JP (1996) Nitric oxide modulates glomerular filtration and renal blood flow of the newborn rabbit. Biol Neonate 69:389–398

    PubMed  Google Scholar 

  49. Buist SC, Cherrington NJ, Choudhuri S, Hartley DP, Klaassen CD (2002) Gender-specific and developmental influences on the expression of rat organic anion transporters. J Pharmacol Exp Ther 301:145–151

    Article  PubMed  Google Scholar 

  50. Rosati A, Maniori S, Decorti G, Candussio L, Giraldi T, Bartoli F (2003) Physiological regulation of P-glycoprotein, MRP1, MRP2 and Cytochrome P450 3A2 during rat ontogeny. Dev Growth Differ 45:377–387

    Article  PubMed  Google Scholar 

  51. Mahmood B, Daood MJ, Hart C, Hansen TW, Watchko JF (2001) Ontogeny of P-glycoprotein in mouse intestine, liver, and kidney. J Investing Med 49:250–257

    Google Scholar 

  52. Rane A, Wilson JT (1976) Clinical pharmacokinetics in infants and children. Clin Pharmacokinet 1:2–24

    PubMed  Google Scholar 

  53. Mamzoridi K, Kasteridou N, Peonides A, Niopas I (1996) Pharmacokinetics of cefixime in children with urinary tract infections after a single oral dose. Pharmacol Toxicol 78:417–420

    PubMed  Google Scholar 

  54. Proesmans W, Van Dyck M (2004) Enalapril in children with Alport syndrome. Pediatr Nephrol 19:271–275

    Article  PubMed  Google Scholar 

  55. Noormohamed FH, McNabb WR, Lant AF (1990) Pharmacokinetic and pharmacodynamic actions of enalapril in humans: effect of probenecid pretreatment. J Pharmacol Exp Ther 253:362–368

    PubMed  Google Scholar 

  56. Morrison RA, Singhvi SM, Creasey WA, Willard DA (1988) Dose proportionality of nadolol pharmacokinetics after intravenous administration to healthy subjects. Eur J Clin Pharmacol 33:625–628

    Article  PubMed  Google Scholar 

  57. Fine RN, Yadin O, Moulten L, Nelson PA, Boechat MI, Lippe BH (1992) Extended recombinant human growth hormone treatment after renal transplantation in children. J Am Soc Nephrol 2:S274–283

    PubMed  Google Scholar 

  58. Naber KG, Westenfelder SR, Madsen PO (1973) Pharmacokinetics of the aminoglycoside antibiotic tobramycin in humans. Antimicrob Agents Chemother 3:469–473

    PubMed  Google Scholar 

  59. Bauer LA, Blouin RA (1982) Gentamicin pharmacokinetics: effect of aging in patients with normal renal function. J Am Geriatr Soc 30:309–311

    PubMed  Google Scholar 

  60. Albert KS, Gernaat CM (1984) Pharmacokinetics of ibuprofen. Am J Med. 77:40–46

    Google Scholar 

  61. Alvan G, Orme M, Bertilsson L, Ekstrand R, Palmer L (1975) Pharmacokinetics of indomethacin. Clin Pharmacol Ther 18:364–373

    PubMed  Google Scholar 

  62. Gyselynck AM, Forrey A, Cutler R (1971) Pharmacokinetics of gentamicin: distribution and plasma and renal clearance. J Infect Dis 124:S70–76

    Google Scholar 

  63. Benson JM, Nahata MC (1989) Pharmacokinetics of amphotericin C in children. Antimicrob Agents Chemother 33:1989–1993

    PubMed  Google Scholar 

  64. Creasey WA, Funke PT, McKindstry DN, Sugerman AA (1986) Pharmacokinetics of captopril in elderly healthy male volunteers. J Clin Pharmacol 26:264–268

    PubMed  Google Scholar 

  65. Duchin KL, Singhvi SM, Willard DA, Migdalof BH, McKinstry DN (1982) Captopril kinetics. Clin Pharmacol Ther 31:452–458

    PubMed  Google Scholar 

  66. Dreyfuss J, Brannick LJ, Vukovich RA, Shaw JM, Willard DA (1977) Metabolic studies in patients with nadolol: oral and intravenous administration. J Clin Pharmacol 17:300–307

    PubMed  Google Scholar 

  67. Mehta AV, Chidambaram B, Rice PJ (1992) Pharmacokinetics of nadolol in children with supraventricular tachycardia. J Clin Pharmacol 32:1023–1027

    PubMed  Google Scholar 

  68. Gomeni R, Bianchetti G, Sega R, Morselli PL (1977) Pharmacokinetics of propranolol in normal healthy volunteers. J Pharmacokinet Biopharm 5:183–192

    Article  PubMed  Google Scholar 

  69. Gorodischer R, Jusko WJ, Yaffe SJ (1977) Renal clearance of digoxin in young infants. Res Commun Chem Pathol Pharmacol 16:363–374

    PubMed  Google Scholar 

  70. Griffith RS (1983) The pharmacology of cephalexin. Postgrad Med J 59:16–27

    PubMed  Google Scholar 

  71. Han EE, Beringer PM, Louis SG, Gill MA, Shapiro BJ (2004) Pharmacokinetics of ibuprofen in children with cystic fibrosis. Clin Pharmacokinet 43:145–156

    PubMed  Google Scholar 

  72. Hedman A, Adan-Abdi Y, Alvan G, Strandvik B, Arvidsson A (1988) Influence of the glomerular filtration rate on renal clearance of ceftazidime in cystic fibrosis. Clin Pharmacokinet 15:57–65

    PubMed  Google Scholar 

  73. Hoecker JL, Pickering LK, Swaney J, Kramer WG, van Eys J, Feldman S, Kohl S (1978) Clinical pharmacology of tobramycin in children. J Infect Dis 137:592–596

    PubMed  Google Scholar 

  74. Isalo E (1977) Clinical pharmacokinetics of digoxin. Clin Pharmacokinet 2:1–16

    PubMed  Google Scholar 

  75. Levy M, Koren G, Klein J, McLorie G, Balfe JW (1991) Captopril pharmacokinetics, blood pressure response and plasma renin activity in normotensive children with renal scarring. Dev Pharmacol Ther 16:185–193

    PubMed  Google Scholar 

  76. Ochs HR, Greenblatt DJ, Bodem G, Harmatz JS (1978) Dose-independent pharmacokinetics of digoxin in humans. Am Heart J 96:507–511

    Article  PubMed  Google Scholar 

  77. Olkkola KT, Maunuksela EL, Korpela R (1989) Pharmacokinetics of postoperative intravenous indomethacin in children. Pharmacol Toxicol 65:157–160

    PubMed  Google Scholar 

  78. Richer C, Giroux B, Plouin PF, Maarek b, Giudicelli JF (1984) Captopril: pharmacokinetics, antihypertensive and biological effects in hypertensive patients. Br J Clin Pharmacol 17:243–250

    PubMed  Google Scholar 

  79. Roberts CJ (1984) Clinical pharmacokinetics of ranitidine. Clin Pharmacokinet 9:211–221

    PubMed  Google Scholar 

  80. Stoeckel K, Hayton WL, Edwards DJ (1995) Clinical pharmacokinetics of oral cephalosporines. Antibiot Chemother 47:34–71

    PubMed  Google Scholar 

  81. Mitchell RI, Barratt MT (1975) Pediatric nephrology, chapter 1. Williams Wilkins, Baltimore

Download references

Acknowledgements

This study was supported by a grant of Canadian Institutes Health Research (CIHR) and by the Ivey Chair in Molecular Toxicology, University of Western Ontario, London, Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Koren.

Additional information

Gideon Koren is the CIHR senior scientist

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, N., Aleksa, K., Woodland, C. et al. Ontogeny of drug elimination by the human kidney. Pediatr Nephrol 21, 160–168 (2006). https://doi.org/10.1007/s00467-005-2105-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-2105-4

Keywords

Navigation