Skip to main content

Advertisement

Log in

Hypophosphatemia and growth

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Over the last decade the discovery of fibroblast growth factor 23 (FGF23) and the progressive and ongoing clarification of its role in phosphate and mineral metabolism have led to expansion of the diagnostic spectrum of primary hypophosphatemic syndromes. This article focuses on the impairment of growth in these syndromes. Growth retardation is a common, but not constant, feature and it presents with large variability. As a result of the very low prevalence of other forms of primary hypophosphatemic syndromes, the description of longitudinal growth and the pathogenesis of its impairment have been mostly studied in X-linked hypophosphatemia (XLH) patients and in Hyp mice, the animal model of this disease. In general, children with XLH have short stature with greater shortness of lower limbs than trunk. Treatment with phosphate supplements and 1α vitamin D derivatives heals active lesions of rickets, but does not normalize growth of XLH patients. Patients might benefit from recombinant human growth hormone (rhGH) therapy, which may accelerate the growth rate without increasing body disproportion or correcting hypophosphatemia. These clinical data as well as research findings obtained in Hyp mice suggest that the pathogenesis of defective growth in XLH and other hypophosphatemic syndromes is not entirely dependent on the mineralization disorder and point to other effects of hypophosphatemia itself or FGF23 on the metabolism of bone and growth plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Naderi ASA, Reilly RF (2010) Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol 6:657–665

    Article  Google Scholar 

  2. Bistarakis L, Voskaki I, Lambadaridis J, Sereti H, Sbyrakis S (1986) Renal handling of phosphate in the first six months of life. Arch Dis Child 61:677–681

    Article  PubMed  CAS  Google Scholar 

  3. Lyon AJ, Mcintosh N (1984) Calcium and phosphorus balance in extremely low birth weight infants in the first six weeks of life. Arch Dis Child 59:1145–1150

    Article  PubMed  CAS  Google Scholar 

  4. Thalassinos NC, Leese B, Lathan SC, Joplin GF (1970) Urinary excretion of phosphate in normal children. Arch Dis Child 46:269–272

    Article  Google Scholar 

  5. Cirillo M, Ciacci C, De Santo NG (2008) Age, renal tubular phosphate reabsorption, and serum phosphate levels in adults. N Engl J Med 359:864–866

    Article  PubMed  CAS  Google Scholar 

  6. DOQI http://www.kidney.org/professionals/kdoqi/guidelines_pedbone/guide4.htm Accessed 24 January 2012.

  7. Francis F (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11:130–136

    Article  CAS  Google Scholar 

  8. Francis F, Strom TM, Hennig S, Böddrich A, Lorenz B, Brandau O, Mohnike KL, Cagnoli M, Steffens C, Klages S, Borzym K, Pohl T, Oudet C, Econs MJ, Rowe PS, Reinhardt R, Meitinger T, Lehrach H (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 7:573–585

    PubMed  CAS  Google Scholar 

  9. Gaucher C, Walrant-Debray O, Nguyen TM, Esterle L, Garabédian M, Jehan F (2009) PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet 125:401–411

    Article  PubMed  Google Scholar 

  10. Econs M, McEnery P (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder. J Clin Endocrinol Metab 82:674–681

    Article  PubMed  CAS  Google Scholar 

  11. The ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF 23. Nat Genet 26:345–348

    Article  Google Scholar 

  12. Lorenz-Depiereux B, Bastepe M, Benet-Pagès A, Amyere M, Wagenstaller J, Müller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Jüppner H, Strom TM (2006) DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248–1250

    Article  PubMed  CAS  Google Scholar 

  13. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE (2006) Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310–1315

    Article  PubMed  CAS  Google Scholar 

  14. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Höhne W, Schauer G, Lehmann M, Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M, Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nürnberg P (2003) Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet 34:379–381

    Article  PubMed  CAS  Google Scholar 

  15. Lorenz-Depiereux B, Schnabel D, Tiosano D, Häusler G, Strom TM (2010) Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 86:267–272

    Article  PubMed  CAS  Google Scholar 

  16. Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, Manor E, Buriakovsky S, Hadad Y, Goding J, Parvari R (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86:273–278

    Article  PubMed  CAS  Google Scholar 

  17. Nitschke Y, Baujat G, Botschen U, Wittkampf T, du Moulin M, Stella J, Le Merrer M, Guest G, Lambot K, Tazarourte-Pinturier MF, Chassaing N, Roche O, Feenstra I, Loechner K, Deshpande C, Garber SJ, Chikarmane R, Steinmann B, Shahinyan T, Martorell L, Davies J, Smith WE, Kahler SG, McCulloch M, Wraige E, Loidi L, Höhne W, Martin L, Hadj-Rabia S, Terkeltaub R, Rutsch F (2012) Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet 90:25–39

    Article  PubMed  CAS  Google Scholar 

  18. Miedlich SU, Zhu ED, Sabbaggh Y, Demay MB (2010) The receptor-dependent actions of 1,25-dihydroxyvitamin D are required for normal growth plate maturation in NPt2a knockout mice. Endocrinology 151:4607–4612

    Article  PubMed  CAS  Google Scholar 

  19. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, Robling AG, Stayrook KR, Jideonwo V, Magers MJ, Garringer HJ, Vidal R, Chan RJ, Goodwin CB, Hui SL, Peacock M, White KE (2011) Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A 108:E1146–E1155

    Article  PubMed  CAS  Google Scholar 

  20. Negri AL, Negrotti T, Alonso G, Pasqualini T (2004) Different forms of clinical presentation of an autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation in one family. Medicina (B Aires) 64:103–106

    Google Scholar 

  21. Gribaa M, Younes M, Bouyacoub Y, Korbaa W, Ben Charfeddine I, Touzi M, Adala L, Mamay O, Bergaoui N, Saad A (2010) An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation. J Bone Miner Metab 28:111–115

    Article  PubMed  Google Scholar 

  22. Sun Y, Wang O, Xia W, Jiang Y, Li M, Xing X, Hu Y, Liu H, Meng X, Zhou X (2012) FGF23 analysis of a Chinese family with autosomal dominant hypophosphatemic rickets. J Bone Miner Metab 30:78–84

    Article  PubMed  CAS  Google Scholar 

  23. Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Jüppner H, Jonsson KB (2004) Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087–3094

    Article  PubMed  CAS  Google Scholar 

  24. Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, Maor J, WeissgartenJ, J, Averbukh Z, Cohen N, Edelstein S, Liberman UA (1987) “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets: two phenotypical expressions of a common genetic defect. N Engl J Med 316:125–129

    Article  PubMed  CAS  Google Scholar 

  25. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    Article  PubMed  CAS  Google Scholar 

  26. Mejia-Gaviria N, Gil-Peña H, Coto E, Pérez-Menéndez TM, Santos F (2010) Genetic and clinical peculiarities in a new family with hereditary hypophosphatemic rickets with hypercalciuria: a case report. Orphanet J Rare Dis 5:1

    Article  PubMed  Google Scholar 

  27. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 297:F671–F678

    Article  PubMed  CAS  Google Scholar 

  28. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    Article  PubMed  CAS  Google Scholar 

  29. Makras P, Hamdy NAT, Kant SG, Papapoulos SE (2008) Normal growth and muscle dysfunction in X-linked hypophosphatemic rickets associated with a novel mutation in the PHEX gene. J Clin Endocrinol Metab 93:1386–1389

    Article  PubMed  CAS  Google Scholar 

  30. Zivičnjak M, Schnabel D, Billing H, Staude H, Filler G, Querfeld U, Schumacher M, Pyper A, Schröder C, Brämswig J, Haffner D, Hypophosphatemic Rickets Study Group of Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie (2011) Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr Nephrol 26:223–231

    Article  PubMed  Google Scholar 

  31. Mäkitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 88:3591–3597

    Article  PubMed  Google Scholar 

  32. Schütt SM, Schumacher M, Holterhus PM, Felgenhauer S, Hiort O (2003) Effect of GH replacement therapy in two male siblings with combined X-linked hypophosphatemia and partial GH deficiency. Eur J Endocrinol 149:317–321

    Article  PubMed  Google Scholar 

  33. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G (2001) Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr 138:236–243

    Article  PubMed  CAS  Google Scholar 

  34. Haffner D, Nissel R, Wühl E, Mehls O (2004) Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics 113:e593

    Article  PubMed  Google Scholar 

  35. Sochett E, Doria AS, Henriques F, Kooh SW, Daneman A, Mäkitie O (2004) Growth and metabolic control during puberty in girls with X-linked hypophosphataemic rickets. Horm Res 61:252–256

    Article  PubMed  CAS  Google Scholar 

  36. McNair SL, Stickler GB (1969) Growth in familial hypophosphatemic vitamin-D-resistant rickets. N Engl J Med 281:511–516

    Article  Google Scholar 

  37. Jehan F, Gaucher C, Nguyen TM, Walrant-Debray O, Lahlou N, Sinding C, Déchaux M, Garabédian M (2008) Vitamin D receptor genotype in hypophosphatemic rickets as a predictor of growth and response to treatment. J Clin Endocrinol Metab 93:4672–4682

    Article  PubMed  CAS  Google Scholar 

  38. Quinlan C, Guegan K, Offiah A, Neill RO, Hiorns MP, Ellard S, Bockenhauer D, Hoff WV, Waters AM (2012) Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol 27:581–588

    Article  PubMed  Google Scholar 

  39. Strom TM, Francis F, Lorenz B, Böddrich A, Econs MJ, Lehrach H, Meitinger T (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 6:165–171

    Article  PubMed  CAS  Google Scholar 

  40. Eicher EM, Southard JL, Scriver CR, Glorieux FH (1976) Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets (X-linkage/phosphate transport/animal model). Proc Natl Acad Sci USA 73:4667–4671

    Article  PubMed  CAS  Google Scholar 

  41. Yuan B, Takaiwa M, Clemens TL, Feng JQ, Kumar R, Rowe PS, Xie Y, Drezner MK (2008) Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest 118:722–734

    PubMed  CAS  Google Scholar 

  42. Tenenhouse HS (1999) X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant 14:333–341

    Article  PubMed  CAS  Google Scholar 

  43. Ranch D, Zhang MYH, Portale AA, Perwad F (2011) Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in Hyp mice. J Bone Miner Res 26:1883–1890

    Article  PubMed  CAS  Google Scholar 

  44. Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K (2003) Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 285:F1271–F1278

    PubMed  CAS  Google Scholar 

  45. Baum M, Loleh S, Saini N, Seikaly M, Dwarakanath V, Quigley R (2003) Correction of proximal tubule phosphate transport defect in Hyp mice in vivo and in vitro with indomethacin. Proc Natl Acad Sci USA 100:11098–11103

    Article  PubMed  CAS  Google Scholar 

  46. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642

    Article  PubMed  CAS  Google Scholar 

  47. Qiu ZQ, Travers R, Rauch F, Glorieux FH, Scriver CR, Tenenhouse HS (2004) Effect of gene dose and parental origin on bone histomorphometry in X-linked Hyp mice. Bone 34:134–139

    Article  PubMed  CAS  Google Scholar 

  48. Carbajo E, López JM, Santos F, Ordóñez FA, Niño P, Rodríguez J (2001) Histologic and dynamic changes induced by chronic metabolic acidosis in the rat growth plate. J Am Soc Nephrol 12:1228–1234

    PubMed  CAS  Google Scholar 

  49. Alvarez-Garcia O, Carbajo-Pérez E, Garcia E, Gil H, Molinos I, Rodriguez J, Ordoñez FA, Santos F (2007) Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol 22:954–961

    Article  PubMed  Google Scholar 

  50. Gil-Peña H, Garcia-Lopez E, Alvarez-Garcia O, Loredo V, Carbajo-Perez E, Ordoñez FA, Rodriguez-Suarez J, Santos F (2009) Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment. Am J Physiol Renal Physiol 297:F639–F645

    Article  PubMed  Google Scholar 

  51. Santos F, Carbajo-Pérez E, Rodríguez J, Fernández-Fuente M, Molinos I, Amil B, García E (2005) Alterations of the growth plate in chronic renal failure. Pediatr Nephrol 20:330–334

    Article  PubMed  Google Scholar 

  52. Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge AM, Rowe PS (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772

    Article  PubMed  CAS  Google Scholar 

  53. Argiro L, Desbarats M, Glorieux FH, Ecarot B (2001) Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 74:342–351

    Article  PubMed  CAS  Google Scholar 

  54. Rowe PSN, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46

    Article  PubMed  CAS  Google Scholar 

  55. Liu S, Brown TA, Zhou J, Xiao ZS, Awad H, Guilak F, Quarles LD (2005) Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol 16:1645–1653

    Article  PubMed  CAS  Google Scholar 

  56. Liu S, Guo R, Quarles LD (2001) Cloning and characterization of the proximal murine Phex promoter. Endocrinology 142:3987–3995

    Article  PubMed  CAS  Google Scholar 

  57. Miao D, Bai X, Panda DK, Karaplis AC, Goltzman D, McKee MD (2004) Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in Hyp mice. Bone 34:638–647

    Article  PubMed  CAS  Google Scholar 

  58. Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J (2007) Fibroblast growth factor expression in the postnatal growth plate. Bone 40:577–586

    Article  PubMed  CAS  Google Scholar 

  59. Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, Quarles LD (2009) Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 23:1505–1518

    Article  PubMed  CAS  Google Scholar 

  60. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    Article  PubMed  CAS  Google Scholar 

  61. Wu S, Levenson A, Kharitonenkov A, De Luca F (2012) Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 287:26060–26067

    Article  PubMed  CAS  Google Scholar 

  62. Petersen DJ, Boniface AM, Schranck FW, Rupich RC, Whyte MP (1992) X-linked hypophosphatemic rickets: a study (with literature review) of linear growth response to calcitriol and phosphate therapy. J Bone Miner Res 7:583–597

    Article  PubMed  CAS  Google Scholar 

  63. Rohmiller MT, Tylkowski C, Kriss VM, Mier RJ (1999) The effect of osteotomy on bowing and height in children with X-linked hypophosphatemia. J Pediatr Orthop 19:114–118

    PubMed  CAS  Google Scholar 

  64. Dudkiewicz I, Schindler A, Ganel A (2003) Elongation of long bones for short stature in patients with hypophosphatemic rickets. Isr Med Assoc J 5:66–67

    PubMed  Google Scholar 

  65. Živičnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, Holder M, Billing H, Fischer DC, Rabl W, Schumacher M, Hiort O, Haffner D, Hypophosphatemic Rickets Study Group of the Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie (2011) Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab 96:E2097–E2105

    Article  PubMed  Google Scholar 

  66. Cameron FJ, Sochett EB, Daneman A, Kooh SW (1999) A trial of growth hormone therapy in well-controlled hypophosphataemic rickets. Clin Endocrinol (Oxf) 50:577–582

    Article  CAS  Google Scholar 

  67. Yang HM, Mao M, Yang F, Wan C (2005) Recombinant growth hormone therapy for X-linked hypophosphatemia in children. Cochrane Database Syst Rev CD004447. DOI: 10.1002/14651858.CD004447.pub2

  68. Seikaly MG, Brown R, Baum M (1997) The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics 100:879–884

    Article  PubMed  CAS  Google Scholar 

  69. Roy S, Martel J, Tenenhouse HS (1997) Growth hormone normalizes renal 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression but not Na+-phosphate cotransporter (Npt2) mRNA in phosphate-deprived Hyp mice. J Bone Miner Res 12:1672–1680

    Article  PubMed  CAS  Google Scholar 

  70. Tenenhouse HS, Roy S, Martel J, Gauthier C (1998) Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol 275:F527–F534

    PubMed  CAS  Google Scholar 

  71. Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD (2008) Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol 3:658–664

    Article  PubMed  CAS  Google Scholar 

  72. Seikaly MG, Waber PG, Baum M (2008) Urinary prostaglandins and the effect of indomethacin on phosphate excretion in children with hypophosphatemic rickets. Pediatr Res 64:210–212

    Article  PubMed  CAS  Google Scholar 

  73. Yamashita T, Konishi M, Miyake A, Inui K, Itoh N (2002) Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 277:28265–28270

    Article  PubMed  CAS  Google Scholar 

  74. Farrow EG, Summers LJ, Schiavi SC, McCormick JA, Ellison DH, White KE (2010) Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation. J Endocrinol 207:67–75

    Article  PubMed  CAS  Google Scholar 

  75. Zhang MY, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, Perwad F (2012) Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice. Endocrinology 153:1806–1816

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by research grants PI 09-90758 and PS 09-02354 from the Instituto de Salud Carlos III and by the Fundacion Nutricion y Crecimiento.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, F., Fuente, R., Mejia, N. et al. Hypophosphatemia and growth. Pediatr Nephrol 28, 595–603 (2013). https://doi.org/10.1007/s00467-012-2364-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2364-9

Keywords

Navigation