Skip to main content

Drug Dosing in Abnormal Kidney Function in Children

  • Living reference work entry
  • First Online:
Pediatric Nephrology
  • 19 Accesses

Abstract

As more than 60% of drugs are cleared by the kidneys, knowledge of drug handling and drug dosing in children with abnormal kidney function is essential. However, predicting drug clearance of drugs by the kidneys is not so straightforward. Very few drugs are actually cleared by glomerular filtration as this process requires that the drug to be unbound to plasma protein and an approprite size. Most drugs are actively transported into the lumen of the tubule and functionally, intact nephron endowment would be required for accurate drug clearance. Unfortunately, ways to assess nephron endowment are not clinically practical and therefore glomerular filtration rate (GFR) remains the best surrogate marker of nephron endowment.

In this chapter we will discuss developmental changes of drug transport, how children handle drugs with normal and impaired kidney function, and general principles of drug dosing in children with chronic kidney disease (CKD). We will also cover drug dosing during renal replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAG:

Acid glycoprotein

AKI:

Acute kidney injury

APD:

Automated peritoneal dialysis

CAPD:

Continuous ambulatory peritoneal dialysis

CAVHF:

Continuous arterio-venous hemofiltration

CKD:

Chronic kidney disease

CRRT:

Continuous renal replacement therapies

CVVH:

Continuous veno-venous hemofiltration

CVVHD:

Continuous veno-venous hemodialysis

CVVHDF:

Continuous veno-venous hemofiltration

CysC:

Cystatin C

ERPF:

Effective renal plasma flow

ESRD:

End-stage renal disease

GFR:

Glomerular filtration rate

HD:

Hemodialysis

IHD:

Intermittent hemodialysis

KDIGO:

Kidney Disease: Improving Global Outcomes

PD:

Peritoneal dialysis

RRF:

Residual renal function

SCUF:

Slow continuous ultrafiltration

SLED:

Sustained low-efficiency dialysis

Vd:

Volume of distribution

References

  1. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    Article  CAS  PubMed  Google Scholar 

  2. Hales CM, Kit BK, Gu Q, Ogden CL. Trends in prescription medication use among children and adolescents-United States, 1999–2014. JAMA. 2018;319(19):2009–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pratico AD, Longo L, Mansueto S, Gozzo L, Barberi I, Tiralongo V, et al. Off-label use of drugs and adverse drug reactions in pediatric units: a prospective, multicenter study. Curr Drug Saf. 2018;13(3):200–7.

    Article  CAS  PubMed  Google Scholar 

  4. Mulla H. Understanding developmental pharmacodynamics: importance for drug development and clinical practice. Paediatr Drugs. 2010;12(4):223–33.

    Article  PubMed  Google Scholar 

  5. Greenblatt DJ, Divoll M, Abernethy DR, Shader RI. Physiologic changes in old age: relation to altered drug disposition. J Am Geriatr Soc. 1982;30(11 Suppl):S6–10.

    Article  CAS  PubMed  Google Scholar 

  6. Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2):250–67.

    Article  CAS  PubMed  Google Scholar 

  7. Rodieux F, Gotta V, Pfister M, van den Johannes A. Causes and consequences of variability in drug transporter activity in pediatric drug therapy. J Clin Pharmacol. 2016;56(Suppl 7):S173–92.

    Article  CAS  PubMed  Google Scholar 

  8. Motohashi H, Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013;15(2):581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilbaux M, Fuchs A, Samardzic J, Rodieux F, Csajka C, Allegaert K, et al. Pharmacometric approaches to personalize use of primarily renally eliminated antibiotics in preterm and term neonates. J Clin Pharmacol. 2016;56(8):909–35.

    Article  CAS  PubMed  Google Scholar 

  10. Filler G, Bhayana V, Schott C, Diaz-Gonzalez de Ferris ME. How should we assess renal function in neonates and infants? Acta Paediatr. 2020;110:773.

    Article  PubMed  CAS  Google Scholar 

  11. Gibaldi M. Biopharmaceutics and clinical pharmacokinetics. Philadelphia: Lea & Febiger; 1984.

    Google Scholar 

  12. Filler G, Yasin A, Medeiros M. Methods of assessing renal function. Pediatr Nephrol. 2014;29(2):183–192.

    Google Scholar 

  13. Feber J, Gaboury I, Ni A, Alos N, Arora S, Bell L, et al. Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int. 2012;23(2):751–60.

    Article  CAS  PubMed  Google Scholar 

  14. Filler G, Bökenkamp A, Hofmann W, Le Bricon T, Martínez-Brú C, Grubb A. Cystatin C as a marker of GFR – history, indications, and future research. Clin Biochem. 2005;38(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Filler G, Huang S-HS, Yasin A. The usefulness of cystatin C and related formulae in pediatrics. Clin Chem Lab Med. 2012;50:2081.

    Article  CAS  PubMed  Google Scholar 

  16. Filler G, Lopes L, Harrold J, Bariciak E. Beta-trace protein may be a more suitable marker of neonatal renal function. Clin Nephrol. 2014;81:269.

    Article  CAS  PubMed  Google Scholar 

  17. Huseman D, Gellermann J, Vollmer I, Ohde I, Devaux S, Ehrich JH, et al. Long-term prognosis of hemolytic uremic syndrome and effective renal plasma flow. Pediatr Nephrol. 1999;13(8):672–7.

    Article  CAS  PubMed  Google Scholar 

  18. Huang S-HS, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G. Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol. 2011;6(2):274–80.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matzke GR, Aronoff GR, Atkinson AJ Jr, Bennett WM, Decker BS, Eckardt KU, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37.

    Article  CAS  PubMed  Google Scholar 

  21. Munar MY, Singh H. Drug dosing adjustments in patients with chronic kidney disease. Am Fam Physician. 2007;75(10):1487–96.

    PubMed  Google Scholar 

  22. Verbeeck RK, Musuamba FT. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol. 2009;65(8):757–73.

    Article  CAS  PubMed  Google Scholar 

  23. Vlavonou R, Perreault MM, Barriere O, Shink E, Tremblay PO, Larouche R, et al. Pharmacokinetic characterization of baclofen in patients with chronic kidney disease: dose adjustment recommendations. J Clin Pharmacol. 2014;54:584.

    Article  CAS  PubMed  Google Scholar 

  24. Dreisbach AW, Lertora JJ. The effect of chronic renal failure on drug metabolism and transport. Expert Opin Drug Metab Toxicol. 2008;4(8):1065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naud J, Nolin TD, Leblond FA, Pichette V. Current understanding of drug disposition in kidney disease. J Clin Pharmacol. 2012;52(1 Suppl):10S–22S.

    CAS  PubMed  Google Scholar 

  26. Nolin TD, Naud J, Leblond FA, Pichette V. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin Pharmacol Ther. 2008;83(6):898–903.

    Article  CAS  PubMed  Google Scholar 

  27. Velenosi TJ, Urquhart BL. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Expert Opin Drug Metab Toxicol. 2014;10:1131–43.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Zhang L, Abraham S, Apparaju S, Wu TC, Strong JM, et al. Assessment of the impact of renal impairment on systemic exposure of new molecular entities: evaluation of recent new drug applications. Clin Pharmacol Ther. 2009;85(3):305–11.

    Article  CAS  PubMed  Google Scholar 

  29. DeSoi CA, Sahm DF, Umans JG. Vancomycin elimination during high-flux hemodialysis: kinetic model and comparison of four membranes. Am J Kidney Dis. 1992;20(4):354–60.

    Article  CAS  PubMed  Google Scholar 

  30. Pallotta KE, Manley HJ. Vancomycin use in patients requiring hemodialysis: a literature review. Semin Dial. 2008;21(1):63–70.

    Article  PubMed  Google Scholar 

  31. Baillie GE and Mason NA. 2013 Dialysis of Drugs. Renal Pharmacy Consultants, LLC, Saline Michigan, USA 2013.

    Google Scholar 

  32. Steinman TI. Serum albumin: its significance in patients with ESRD. Semin Dial. 2000;13(6):404–8.

    Article  CAS  PubMed  Google Scholar 

  33. Vasson MP, Paul JL, Couderc R, Albuisson E, Bargnoux PJ, Baguet JC, et al. Serum alpha-1 acid glycoprotein in chronic renal failure and hemodialysis. Int J Artif Organs. 1991;14(2):92–6.

    Article  CAS  PubMed  Google Scholar 

  34. Dasgupta A, Abu-Alfa A. Increased free phenytoin concentrations in predialysis serum compared to postdialysis serum in patients with uremia treated with hemodialysis. Role of uremic compounds. Am J Clin Pathol. 1992;98(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  35. Mabuchi H, Nakahashi H. A major inhibitor of phenytoin binding to serum protein in uremia. Nephron. 1988;48(4):310–4.

    Article  CAS  PubMed  Google Scholar 

  36. Sakai T, Yamasaki K, Sako T, Kragh-Hansen U, Suenaga A, Otagiri M. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to site II, and ligands bound to site I of human serum albumin. Pharm Res. 2001;18(4):520–4.

    Article  CAS  PubMed  Google Scholar 

  37. Steele WH, Lawrence JR, Elliott HL, Whiting B. Alterations of phenytoin protein binding with in vivo haemodialysis in dialysis encephalopathy. Eur J Clin Pharmacol. 1979;15(1):69–71.

    Article  CAS  PubMed  Google Scholar 

  38. Vanholder R, Van Landschoot N, De Smet R, Schoots A, Ringoir S. Drug protein binding in chronic renal failure: evaluation of nine drugs. Kidney Int. 1988;33(5):996–1004.

    Article  CAS  PubMed  Google Scholar 

  39. Amin NB, Padhi ID, Touchette MA, Patel RV, Dunfee TP, Anandan JV. Characterization of gentamicin pharmacokinetics in patients hemodialyzed with high-flux polysulfone membranes. Am J Kidney Dis. 1999;34(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bohler J, Reetze-Bonorden P, Keller E, Kramer A, Schollmeyer PJ. Rebound of plasma vancomycin levels after haemodialysis with highly permeable membranes. Eur J Clin Pharmacol. 1992;42(6):635–9.

    Article  CAS  PubMed  Google Scholar 

  41. Veltri MA, Neu AM, Fivush BA, Parekh RS, Furth SL. Drug dosing during intermittent hemodialysis and continuous renal replacement therapy : special considerations in pediatric patients. Paediatr Drugs. 2004;6(1):45–65.

    Article  PubMed  Google Scholar 

  42. Goldstein SL, Somers MJ, Baum MA, Symons JM, Brophy PD, Blowey D, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  PubMed  Google Scholar 

  43. Burkhardt O, Hafer C, Langhoff A, Kaever V, Kumar V, Welte T, et al. Pharmacokinetics of ertapenem in critically ill patients with acute renal failure undergoing extended daily dialysis. Nephrol Dial Transplant. 2009;24(1):267–71.

    Article  CAS  PubMed  Google Scholar 

  44. Burkhardt O, Joukhadar C, Traunmuller F, Hadem J, Welte T, Kielstein JT. Elimination of daptomycin in a patient with acute renal failure undergoing extended daily dialysis. J Antimicrob Chemother. 2008;61(1):224–5.

    Article  CAS  PubMed  Google Scholar 

  45. Khadzhynov D, Slowinski T, Lieker I, Spies C, Puhlmann B, Konig T, et al. Plasma pharmacokinetics of daptomycin in critically ill patients with renal failure and undergoing CVVHD. Int J Clin Pharmacol Ther. 2011;49(11):656–65.

    Article  CAS  PubMed  Google Scholar 

  46. Thompson AJ. Drug dosing during continuous renal replacement therapies. J Pediatr Pharmacol Ther. 2008;13(2):99–113.

    PubMed  PubMed Central  Google Scholar 

  47. Seyffart G. Seyffart’s directory of drug dosing in kidney disease. Oberhaching: Dustri Verlag Dr. Karl Feistle; 2011. 870 p

    Google Scholar 

  48. Bennett WM. Drug prescribing in renal failure : dosing guidelines for adults and children. 5th ed. Philadelphia: American College of Physicians; 2007. 272 p.

    Google Scholar 

  49. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51; quiz 59.

    Article  CAS  PubMed  Google Scholar 

  50. Schaefer F, Warady BA. Peritoneal dialysis in children with end-stage renal disease. Nat Rev Nephrol. 2011;7(11):659–68.

    Article  PubMed  Google Scholar 

  51. Hirata S, Kadowaki D. Appropriate drug dosing in patients receiving peritoneal dialysis. Contrib Nephrol. 2012;177:30–7.

    Article  PubMed  Google Scholar 

  52. Manley HJ, Bailie GR, Frye RF, McGoldrick MD. Intravenous vancomycin pharmacokinetics in automated peritoneal dialysis patients. Perit Dial Int. 2001;21(4):378–85.

    Article  CAS  PubMed  Google Scholar 

  53. Manley HJ, Bailie GR, Frye R, Hess LD, McGoldrick MD. Pharmacokinetics of intermittent intravenous cefazolin and tobramycin in patients treated with automated peritoneal dialysis. J Am Soc Nephrol. 2000;11(7):1310–6.

    Article  CAS  PubMed  Google Scholar 

  54. Warady BA, Bakkaloglu S, Newland J, Cantwell M, Verrina E, Neu A, et al. Consensus guidelines for the prevention and treatment of catheter-related infections and peritonitis in pediatric patients receiving peritoneal dialysis: 2012 update. Perit Dial Int. 2012;32(Suppl 2):S32–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, et al. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015;88(2):226–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Medeiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Medeiros, M., Filler, G. (2021). Drug Dosing in Abnormal Kidney Function in Children. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_141-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_141-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics