Skip to main content
Log in

A large deformation isogeometric continuum shell formulation incorporating finite strain elastoplasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An isogeometric large-deformation continuum shell formulation incorporating finite strain elastoplasticity is presented in this work. The proposed method is based on the multiplicative decomposition of the deformation gradient into the elastic and plastic contributions in a total Lagrangian framework. The standard return mapping algorithm with the backward Euler time integration technique is adopted to solve the 3D elastoplastic constitutive equations. The classical \(J_2\) von Mises plasticity model with isotropic hardening is implemented to describe the nonlinear material behavior. The results of several benchmark studies are illustrated to showcase the computational accuracy and solution robustness of the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ambati M, Kiendl J, De Lorenzis L (2018) Isogeometric Kirchhoff–Love shell formulation for elasto-plasticity. Comput Methods Appl Mech Eng 340:320–339

    Article  MathSciNet  MATH  Google Scholar 

  2. Alaydin MD, Benson DJ, Bazilevs Y (2021) An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis. Comput Methods Appl Mech Eng 384:113977

    Article  MathSciNet  MATH  Google Scholar 

  3. Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64(5):635–666

    Article  MATH  Google Scholar 

  4. Kim KD, Lomboy GR (2006) A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis. Comput Methods Appl Mech Eng 195(44–47):6502–6522

    Article  MATH  Google Scholar 

  5. Dal Cortivo N, Felippa CA, Bavestrello H, Silva WTM (2009) Plastic buckling and collapse of thin shell structures, using layered plastic modeling and co-rotational ANDES finite elements. Comput Methods Appl Mech Eng 198(5–8):785–798

    Article  MATH  Google Scholar 

  6. Brank B, Perić D, Damjanić FB (1997) On large deformations of thin elasto-plastic shells: implementation of a finite rotation model for quadrilateral shell element. Int J Numer Methods Eng 40(4):689–726

    Article  MATH  Google Scholar 

  7. Klinkel S, Govindjee S (2002) Using finite strain 3D-material models in beam and shell elements. Eng Comput 19(3):254–271

    Article  MATH  Google Scholar 

  8. Dodds RH Jr (1987) Numerical techniques for plasticity computations in finite element analysis. Comput Struct 26(5):767–779

    Article  MATH  Google Scholar 

  9. Dujc J, Brank B (2012) Stress resultant plasticity for shells revisited. Comput Methods Appl Mech Eng 247:146–165

    Article  MathSciNet  MATH  Google Scholar 

  10. Zeng Q, Combescure A, Arnaudeau F (2001) An efficient plasticity algorithm for shell elements application to metal forming simulation. Comput Struct 79(16):1525–1540

    Article  Google Scholar 

  11. Skallerud B, Myklebust LI, Haugen B (2001) Nonlinear response of shell structures: effects of plasticity modelling and large rotations. Thin-Walled Struct 39(6):463–482

    Article  Google Scholar 

  12. Skallerud B, Haugen B (1999) Collapse of thin shell structures-stress resultant plasticity modelling within a co-rotated ANDES finite element formulation. Int J Numer Methods Eng 46(12):1961–1986

    Article  MATH  Google Scholar 

  13. Simo JC, Kennedy JG (1992) On a stress resultant geometrically exact shell model. Part V. Nonlinear plasticity: formulation and integration algorithms. Comput Methods Appl Mech Eng 96(2):133–171

    Article  MATH  Google Scholar 

  14. Crisfield MA, Peng X (1992) Efficient nonlinear shell formulations with large rotations and plasticity. In: Owen DRJ et al (eds) Computational plasticity, fundamentals & applications, part 2. Pineridge Press, Swansea, pp 1979–1996

    Google Scholar 

  15. Taniguchi Y, Takizawa K, Otoguro Y, Tezduyar TE (2022) A hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress: I. Out-of-plane deformation. Comput Mech. https://doi.org/10.1007/s00466-022-02166-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu N, Cui X, Xiao J, Lua J, Phan N (2020) A simplified continuum damage mechanics based modeling strategy for cumulative fatigue damage assessment of metallic bolted joints. Int J Fatigue 131:105302

    Article  Google Scholar 

  17. Liu N, Xiao J, Cui X, Liu P, Lua J (2019) A continuum damage mechanics (CDM) modeling approach for prediction of fatigue failure of metallic bolted joints. In: AIAA Scitech 2019 Forum, p 0237

  18. Liu N, Ren X, Lua J (2020) An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures. Compos Struct 237:111893

    Article  Google Scholar 

  19. Hosseini S, Remmers JJC, Verhoosel CV, de Borst R (2014) An isogeometric continuum shell element for non-linear analysis. Comput Methods Appl Mech Eng 271:1–22

    Article  MathSciNet  MATH  Google Scholar 

  20. Hosseini S, Remmers JJC, Verhoosel CV, de Borst R (2013) An isogeometric solid-like shell element for nonlinear analysis. Int J Numer Methods Eng 95(3):238–256

    Article  MathSciNet  MATH  Google Scholar 

  21. Bouclier R, Elguedj T, Combescure A (2013) Efficient isogeometric NURBS-based solid-shell elements: mixed formulation and \(\bar{B}\)-method. Comput Methods Appl Mech Eng 267:86–110

    Article  MathSciNet  MATH  Google Scholar 

  22. Antolin P, Kiendl J, Pingaro M, Reali A (2020) A simple and effective method based on strain projections to alleviate locking in isogeometric solid shells. Comput Mech 65:1621–1631

    Article  MathSciNet  MATH  Google Scholar 

  23. Bouclier R, Elguedj T, Combescure A (2015) An isogeometric locking-free NURBS-based solid-shell element for geometrically nonlinear analysis. Int J Numer Methods Eng 101(10):774–808

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu N, Johnson EL, Rajanna MR, Lua J, Phan N, Hsu M-C (2021) Blended isogeometric Kirchhoff–Love and continuum shells. Comput Methods Appl Mech Eng 385:114005

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu N, Rajanna MR, Johnson EL, Lua J, Phan N, Hsu M-C (2022) Isogeometric blended shells for dynamic analysis: simulating aircraft takeoff and the resulting fatigue damage on the horizontal stabilizer. Comput Mech. https://doi.org/10.1007/s00466-022-02189-4

  26. Liu N, Lua J, Rajanna MR, Johnson EL, Hsu M-C, Phan ND (2022) Buffet-induced structural response prediction of aircraft horizontal stabilizers based on immersogeometric analysis and an isogeometric blended shell approach. In: AIAA SCITECH 2022 Forum, p 0852

  27. Benson DJ, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo Y, Ruess M (2015) Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures. Comput Methods Appl Mech Eng 284:881–905

  29. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu N, Jeffers AE (2018) A geometrically exact isogeometric Kirchhoff plate: feature-preserving automatic meshing and C\(^1\) rational triangular Bézier spline discretizations. Int J Numer Methods Eng 115(3):395–409

    Article  Google Scholar 

  31. Liu N, Jeffers AE (2019) Feature-preserving rational Bézier triangles for isogeometric analysis of higher-order gradient damage models. Comput Methods Appl Mech Eng 357:112585

    Article  MATH  Google Scholar 

  32. Gómez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49–50):4333–4352

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu J, Dede L, Evans JA, Borden MJ, Hughes TJR (2013) Isogeometric analysis of the advective Cahn–Hilliard equation: spinodal decomposition under shear flow. J Comput Phys 242:321–350

    Article  MathSciNet  MATH  Google Scholar 

  34. Hiemstra RR, Hughes TJR, Reali A, Schillinger D (2021) Removal of spurious outlier frequencies and modes from isogeometric discretizations of second-and fourth-order problems in one, two, and three dimensions. Comput Methods Appl Mech Eng 387:114115

    Article  MathSciNet  MATH  Google Scholar 

  35. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    Article  MathSciNet  MATH  Google Scholar 

  36. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    Article  MathSciNet  MATH  Google Scholar 

  37. Kiendl J, Hsu M-C, Wu MCH, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303

    Article  MathSciNet  MATH  Google Scholar 

  38. Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu MC (2019) Penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840

    Article  MathSciNet  MATH  Google Scholar 

  39. Leonetti L, Liguori FS, Magisano D, Kiendl J, Reali A, Garcea G (2020) A robust penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches in large deformations. Comput Methods Appl Mech Eng 371:113289

    Article  MathSciNet  MATH  Google Scholar 

  40. Casquero H, Wei X, Toshniwal D, Li A, Hughes TJR, Kiendl J, Zhang Y (2020) Seamless integration of design and Kirchhoff–Love shell analysis using analysis-suitable unstructured T-splines. Comput Methods Appl Mech Eng 360:112765

    Article  MathSciNet  MATH  Google Scholar 

  41. Casquero H, Liu L, Zhang Y, Reali A, Kiendl J, Gomez H (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Des 82:140–153

    Article  MathSciNet  Google Scholar 

  42. Takizawa K, Tezduyar TE, Sasaki T (2019) Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping. Comput Mech 63(4):681–700

    Article  MathSciNet  MATH  Google Scholar 

  43. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Methods Eng 83:765–785

    Article  MathSciNet  MATH  Google Scholar 

  44. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

    Article  MathSciNet  MATH  Google Scholar 

  45. Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Methods Appl Mech Eng 284:508–520

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu N, Jeffers AE (2017) Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos Struct 176:143–153

    Article  Google Scholar 

  47. Liu N, Jeffers AE (2018) Adaptive isogeometric analysis in structural frames using a layer-based discretization to model spread of plasticity. Comput Struct 196:1–11

    Article  Google Scholar 

  48. Liu N (2018) Non-uniform rational B-splines and rational Bézier triangles for isogeometric analysis of structural applications. Ph.D. thesis, University of Michigan

  49. Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546

    Article  MathSciNet  MATH  Google Scholar 

  50. Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Yoshida A (2019) Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Comput Fluids 179:790–798

    Article  MathSciNet  MATH  Google Scholar 

  51. Liu N, Jeffers AE, Beata PA (2019) A mixed isogeometric analysis and control volume approach for heat transfer analysis of nonuniformly heated plates. Numer Heat Transf Part B Fundam 75(6):347–362

    Article  Google Scholar 

  52. Herrema AJ, Kiendl J, Hsu M-C (2019) A framework for isogeometric-analysis-based optimization of wind turbine blade structures. Wind Energy 22:153–170

    Article  Google Scholar 

  53. Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211

    Article  MathSciNet  MATH  Google Scholar 

  54. Lorenzo G, Scott MA, Tew K, Hughes TJR, Zhang Y, Liu L, Vilanova G, Gomez H (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci 113(48):E7663–E7671

    Article  Google Scholar 

  55. Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200

    Article  MathSciNet  MATH  Google Scholar 

  56. Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174

    Article  MathSciNet  MATH  Google Scholar 

  57. Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175

    Article  MathSciNet  MATH  Google Scholar 

  58. Lai Y, Zhang YJ, Liu L, Wei X, Fang E, Lua J (2017) Integrating CAD with Abaqus: a practical isogeometric analysis software platform for industrial applications. Comput Math Appl 74:1648–1660

    Article  MathSciNet  MATH  Google Scholar 

  59. Guo Y, Heller J, Hughes TJR, Ruess M, Schillinger D (2018) Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP exchange format. Comput Methods Appl Mech Eng 336:39–79

    Article  MathSciNet  MATH  Google Scholar 

  60. Teschemacher T, Bauer AM, Oberbichler T, Breitenberger M, Rossi R, Wüchner R, Bletzinger K-U (2018) Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis. Adv Model Simul Eng Sci 5:19

    Article  Google Scholar 

  61. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C (2018) A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int J Numer Methods Biomed Eng 34:e2938

    Article  MathSciNet  Google Scholar 

  62. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776

    Article  MathSciNet  MATH  Google Scholar 

  63. Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321

    Article  MathSciNet  MATH  Google Scholar 

  64. Yu Y, Zhang YJ, Takizawa K, Tezduyar TE, Sasaki T (2020) Anatomically realistic lumen motion representation in patient-specific space-time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. Comput Mech 65:395–404

    Article  MathSciNet  MATH  Google Scholar 

  65. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419

    Article  MathSciNet  MATH  Google Scholar 

  66. Yan J, Lin S, Bazilevs Y, Wagner GJ (2019) Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Comput Fluids 179:777–789

    Article  MathSciNet  MATH  Google Scholar 

  67. Lorenzo G, Hughes TJR, Dominguez-Frojan P, Reali A, Gomez H (2019) Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth. Proc Natl Acad Sci 116:1152–1161

    Article  Google Scholar 

  68. Terahara T, Takizawa K, Tezduyar TE, Tsushima A, Shiozaki K (2020) Ventricle-valve-aorta flow analysis with the space-time isogeometric discretization and topology change. Comput Mech 65:1343–1363

    Article  MathSciNet  MATH  Google Scholar 

  69. Terahara T, Takizawa K, Tezduyar TE, Bazilevs Y, Hsu M-C (2020) Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method. Comput Mech 65:1167–1187

    Article  MathSciNet  MATH  Google Scholar 

  70. Pigazzini MS, Kamensky D, van Iersel DAP, Alaydin MD, Remmers JJC, Bazilevs Y (2019) Gradient-enhanced damage modeling in Kirchhoff–Love shells: application to isogeometric analysis of composite laminates. Comput Methods Appl Mech Eng 346:152–179

    Article  MathSciNet  MATH  Google Scholar 

  71. Leidinger LF, Breitenberger M, Bauer AM, Hartmann S, Wüchner R, Bletzinger K-U, Duddeck F, Song L (2019) Explicit dynamic isogeometric B-Rep analysis of penalty-coupled trimmed NURBS shells. Comput Methods Appl Mech Eng 351:891–927

    Article  MathSciNet  MATH  Google Scholar 

  72. Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C (2019) Immersogeometric fluid–structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput Methods Appl Mech Eng 357:112556

    Article  MathSciNet  MATH  Google Scholar 

  73. Balu A, Nallagonda S, Xu F, Krishnamurthy A, Hsu M-C, Sarkar S (2019) A deep learning framework for design and analysis of surgical bioprosthetic heart valves. Sci Rep 9:18560

    Article  Google Scholar 

  74. Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Natl Acad Sci 117:19007–19016

    Article  Google Scholar 

  75. Nitti A, Kiendl J, Reali A, de Tullio MD (2020) An immersed-boundary/isogeometric method for fluid–structure interaction involving thin shells. Comput Methods Appl Mech Eng 364:112977

    Article  MathSciNet  MATH  Google Scholar 

  76. Proserpio D, Ambati M, De Lorenzis L, Kiendl J (2020) A framework for efficient isogeometric computations of phase-field brittle fracture in multipatch shell structures. Comput Methods Appl Mech Eng 372:113363

    Article  MathSciNet  MATH  Google Scholar 

  77. Johnson EL, Hsu M-C (2020) Isogeometric analysis of ice accretion on wind turbine blades. Comput Mech 66:311–322

    Article  MathSciNet  MATH  Google Scholar 

  78. Zhang W, Motiwale S, Hsu M-C, Sacks MS (2021) Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading. J Mech Behav Biomed Mater 123:104745

    Article  Google Scholar 

  79. Behzadinasab M, Hillman M, Bazilevs Y (2021) IGA-PD penalty-based coupling for immersed air-blast fluid-structure interaction: a simple and effective solution for fracture and fragmentation. J Mech 37:680–692

    Article  Google Scholar 

  80. Johnson EL, Laurence DW, Xu F, Crisp CE, Mir A, Burkhart HM, Lee C-H, Hsu M-C (2021) Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves. Comput Methods Appl Mech Eng 384:113960

    Article  MathSciNet  MATH  Google Scholar 

  81. Otoguro Y, Mochizuki H, Takizawa K, Tezduyar TE (2020) Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine. Comput Mech 66:1443–1460

    Article  MathSciNet  MATH  Google Scholar 

  82. Bazilevs Y, Takizawa K, Wu MCH, Kuraishi T, Avsar R, Xu Z, Tezduyar TE (2021) Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method. Comput Mech 67:57–84

    Article  MathSciNet  MATH  Google Scholar 

  83. Johnson EL, Rajanna MR, Yang C-H, Hsu M-C (2022) Effects of membrane and flexural stiffnesses on aortic valve dynamics: identifying the mechanics of leaflet flutter in thinner biological tissues. Forces Mech 6:100053

    Article  Google Scholar 

  84. Huynh GD, Zhuang X, Bui HG, Meschke G, Nguyen-Xuan H (2020) Elasto-plastic large deformation analysis of multi-patch thin shells by isogeometric approach. Finite Elem Anal Des 173:103389

    Article  MathSciNet  Google Scholar 

  85. Caseiro JF, Valente RAF, Reali A, Kiendl J, Auricchio F, Alves de Sousa RJ (2015) Assumed natural strain nurbs-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures. Comput Methods Appl Mech Eng 284:861–880

    Article  MathSciNet  MATH  Google Scholar 

  86. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  87. Liu N, Plucinsky P, Jeffers AE (2017) Combining load-controlled and displacement-controlled algorithms to model thermal-mechanical snap-through instabilities in structures. J Eng Mech 143(8):04017051

    Google Scholar 

  88. Simo JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: part I. Continuum formulation. Comput Methods Appl Mech Eng 66(2):199–219

    Article  MATH  Google Scholar 

  89. Simo JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part II: computational aspects. Comput Methods Appl Mech Eng 68(1):1–31

    Article  MATH  Google Scholar 

  90. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  91. Behzadinasab M, Alaydin M, Trask N, Bazilevs Y (2022) A general-purpose, inelastic, rotation-free Kirchhoff–Love shell formulation for peridynamics. Comput Methods Appl Mech Eng 389:114422

    Article  MathSciNet  MATH  Google Scholar 

  92. Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Google Scholar 

  93. Başar Y, Itskov M (1999) Constitutive model and finite element formulation for large strain elasto-plastic analysis of shells. Comput Mech 23(5):466–481

    MATH  Google Scholar 

  94. Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195(1–3):179–201

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. Naval Air Systems Command (NAVAIR) under Grant No. N68335-20-C-0899. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Hsu, MC., Lua, J. et al. A large deformation isogeometric continuum shell formulation incorporating finite strain elastoplasticity. Comput Mech 70, 965–976 (2022). https://doi.org/10.1007/s00466-022-02193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02193-8

Keywords

Navigation