Skip to main content
Log in

Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Many materials show asymmetric performance under tension and compression and their mechanical property can be well simulated by a so-called bi-modulus type constitutive relation. The underlying non-smoothness nature associated with this kind of constitutive behavior, however, makes it extremely difficult to investigate structural topology optimization problems involving bi-modulus materials. In the present paper, rigorous sensitivity results and efficient solution procedure for topology optimization problems involving a single-phase bi-modulus material are established and generalized to two-phase bi-modulus materials case. The validity and effectiveness of the proposed approach are verified by analytical solutions and numerical results. It is also found that the optimal structural topologies may be highly dependent on the tension to compression modulus ratios and quite different from the one obtained under the assumption of linear elasticity. Besides, the present results can be successfully used for engineering applications such as design of no-tension/no-compression structures and strut-and-tie models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Yang XW, Lee JS, Kim YY (2016) Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. J Sound Vib 383:89–107

    Article  Google Scholar 

  2. Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891

    Article  Google Scholar 

  3. Xue R, Li R, Du Z, Zhang W, Zhu Y, Sun Z, Guo X (2017) Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mech Lett 15:139–144

    Article  Google Scholar 

  4. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202

    Article  Google Scholar 

  6. Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336

    Article  Google Scholar 

  7. Bendsøe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, Berlin

    MATH  Google Scholar 

  8. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  9. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MathSciNet  MATH  Google Scholar 

  10. Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318

    Article  MATH  Google Scholar 

  11. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Article  Google Scholar 

  12. Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15:1031–1048

    Article  MATH  Google Scholar 

  13. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically: a new moving morphable components based framework. J Appl Mech 81:081009

    Article  Google Scholar 

  14. Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748

    Article  MathSciNet  Google Scholar 

  15. Zhang W, Yang W, Zhou J, Li D, Guo X (2017) Structural topology optimization through explicit boundary evolution. J Appl Mech 84:011011

    Article  Google Scholar 

  16. Ambartsumyan SA (1986) Elasticity theory of different moduli. China Railway Publishing House, Beijing

    Google Scholar 

  17. Janmey PA, McCormick ME, Rammensee S, Leight JL, Georges PC, MacKintosh FC (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6:48–51

    Article  Google Scholar 

  18. Ambartsumyan SA (1965) The axisymmetric problem of circular cylindrical shell made of materials with different stiffnesses in tension and compression. Izv Akad Nauk SSSR Mekh 4:77–85

    Google Scholar 

  19. Ambartsumyan SA, Khachatryan AA (1966) Basic equations in the theory of elasticity for materials with different stiffness in tension and compression. Mech Solids 1:29–34

    Google Scholar 

  20. Sun JY, Xia S, Moon MW, Oh KH, Kim KS (2012) Folding wrinkles of a thin stiff layer on a soft substrate. Proc R Soc A 468:932–953

    Article  Google Scholar 

  21. Notbohm J, Lesman A, Rosakis P, Tirrell DA, Ravichandran G (2015) Microbuckling of fibrin provides a mechanism for cell mechanosensing. J R Soc Interface 12:20150320

    Article  Google Scholar 

  22. Tibert G (2002) Deployable tensegrity structures for space applications (Ph.D. thesis). Royal Institute of Technology, Stockholm

  23. Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  24. Du Z, Guo X (2014) Variational principles and the related bounding theorems for bi-modulus materials. J Mech Phys Solids 73:183–211

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang HW, Zhang L, Gao Q (2011) An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle. Comput Struct 89:2352–2360

    Article  Google Scholar 

  26. Zhang L, Gao Q, Zhang HW (2014) Analysis of 2-D bimodular materials and wrinkled membranes based on the parametric variational principle and co-rotational approach. Int J Numer Methods Eng 98:721–746

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang L, Zhang HW, Wu J, Yan B (2016) A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials. Acta Mech Sin 32:481–490

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang L, Dong KJ, Zhang HT, Yan B (2016) A 3D PVP co-rotational formulation for large-displacement and small-strain analysis of bi-modulus materials. Finite Elem Anal Des 110:20–31

    Article  Google Scholar 

  29. Zhong WX (1986) On parametric complementary energy variational principle in soil mechanics. Acta Mech Sin 18:253–258

    MATH  Google Scholar 

  30. Zhong WX, Zhang RL (1988) The parametric variational principle for elastoplasticity. Acta Mech Sin 4:134–137

    Article  Google Scholar 

  31. Zhong WX, Zhang RL (1988) Parametric variational principles and their quadratic programming solutions in plasticity. Comput Struct 30:887–896

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhong WX, Zhang HW, Wu CW (1997) Parametric variational principle and its applications in engineering. Scientific and Technical Publishers, Beijing

    Google Scholar 

  33. Du Z, Zhang Y, Zhang W, Guo X (2016) A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int J Solids Struct 100:54–73

    Article  Google Scholar 

  34. Ran C, Yang H, Zhang G (2018) A gradient based algorithm to solve inverse plane bimodular problems of identification. J Comput Phys 355:78–94

    Article  MathSciNet  MATH  Google Scholar 

  35. Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Multidiscip Optim 12:63–74

    Article  Google Scholar 

  36. Jia H, Misra A, Poorsolhjouy P, Liu C (2017) Optimal structural topology of materials with micro-scale tension–compression asymmetry simulated using granular micromechanics. Mater Des 115:422–432

    Article  Google Scholar 

  37. Ramos AS Jr, Paulino GH (2015) Convex topology optimization for hyperelastic trusses based on the ground-structure approach. Struct Multidiscip Optim 51:287–304

    Article  MathSciNet  Google Scholar 

  38. Zhang X, Ramos AS Jr, Paulino GH (2017) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55:2045–2072

    Article  MathSciNet  Google Scholar 

  39. Chang CJ, Zheng B, Gea HC (2007) Topology optimization for tension/compression only design. In: Proceedings of the 7th WCSMO, Korea, pp. 2488–2495

  40. Liu S, Qiao H (2011) Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design. Struct Multidiscip Optim 43:369–380

    Article  Google Scholar 

  41. Querin OM, Victoria M, Martí P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidiscip Optim 42:25–32

    Article  Google Scholar 

  42. Cai K (2011) A simple approach to find optimal topology of a continuum with tension-only or compression-only material. Struct Multidiscip Optim 43:827–835

    Article  Google Scholar 

  43. Cai K, Gao Z, Shi J (2013) Compliance optimization of a continuum with bimodulus material under multiple load cases. Comput Aided Des 45:195–203

    Article  MathSciNet  Google Scholar 

  44. Cai K, Qin QH, Luo Z, Zhang AJ (2013) Robust topology optimisation of bi-modulus structures. Comput Aided Des 45:1159–1169

    Article  Google Scholar 

  45. Cai K, Gao Z, Shi J (2014) Topology optimization of continuum structures with bi-modulus materials. Eng Optim 46:244–260

    Article  MathSciNet  Google Scholar 

  46. Cai K, Cao J, Shi J, Liu L, Qin QH (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53:801–811

    Article  MathSciNet  Google Scholar 

  47. Alfano G, Rosati L, Valoroso N (2000) A numerical strategy for finite element analysis of no-tension materials. Int J Numer Methods Eng 48:317–350

    Article  MATH  Google Scholar 

  48. Angelillo M, Cardamone L, Fortunato A (2010) A numerical model for masonry-like structures. J Mech Mater Struct 5:583–615

    Article  Google Scholar 

  49. Bruggi M (2014) Finite element analysis of no-tension structures as a topology optimization problem. Struct Multidiscip Optim 50:957–973

    Article  MathSciNet  Google Scholar 

  50. Bruggi M, Duysinx P (2013) A stress-based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48:311–326

    Article  MathSciNet  Google Scholar 

  51. Guan H, Steven GP, Xie YM (1999) Evolutionary structural optimisation incorporating tension and compression materials. Adv Struct Eng 2:273–288

    Article  Google Scholar 

  52. Bruggi M (2009) Generating strut-and-tie patterns for reinforced concrete structures using topology optimization. Comput Struct 87:1483–1495

    Article  Google Scholar 

  53. Victoria M, Querin OM, Martí P (2011) Generation of strut-and-tie models by topology design using different material properties in tension and compression. Struct Multidiscip Optim 44:247–258

    Article  Google Scholar 

  54. Gaynor AT, Guest JK, Moen CD (2012) Reinforced concrete force visualization and design using bilinear truss-continuum topology optimization. J Struct Eng 139:607–618

    Article  Google Scholar 

  55. He XT, Zheng ZL, Sun JY, Li YM, Chen SL (2009) Convergence analysis of a finite element method based on different moduli in tension and compression. Int J Solids Struct 46:3734–3740

    Article  MATH  Google Scholar 

  56. Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New York

    MATH  Google Scholar 

  57. Bagley R (1989) Power law and fractional calculus model of viscoelasticity. AIAA J 27:1412–1417

    Article  Google Scholar 

  58. Guo X, Jin F, Gao H (2011) Mechanics of non-slipping adhesive contact on a power-law graded elastic half-space. Int J Solids Struct 48:2565–2575

    Article  Google Scholar 

  59. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16

    Article  MATH  Google Scholar 

  60. Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  61. Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Methods Appl Mech Eng 190:6605–6627

    Article  MATH  Google Scholar 

  62. Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88:774–796

    Article  MATH  Google Scholar 

  63. Zhang XS, Paulino GH, Ramos AS (2017) Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity. Struct Multidiscip Optim 57:161–182

    Article  MathSciNet  Google Scholar 

  64. Zhang XS, Paulino GH, Ramos AS (2018) Multimaterial topology optimization with multiple volume constraints: Combining the ZPR update with a ground-structure algorithm to select a single material per overlapping set. Int J Numer Methods Eng 114:1053–1073

    Article  MathSciNet  Google Scholar 

  65. Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018) Topology optimization with multiple materials via Moving Morphable Component (MMC) method. Int J Numer Methods Eng 113:1653–1675

    Article  MathSciNet  Google Scholar 

  66. Du Z, Guo X (2016) Symmetry analysis for structural optimization problems involving reliability measure and bi-modulus materials. Struct Multidiscip Optim 53:973–984

    Article  MathSciNet  Google Scholar 

  67. Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496

    Article  MathSciNet  MATH  Google Scholar 

  68. Guo X, Zhang W, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200:3439–3452

    Article  MathSciNet  MATH  Google Scholar 

  69. Cheng GD, Guo X (1997) \(\varepsilon \)-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266

    Article  Google Scholar 

  70. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial support from the National Key Research and Development Plan (2016YFB0201600, 2016YFB0201601, 2017YFB0202800, 2017YFB0202802), the National Natural Science Foundation (11402048, 11732004, 11772026), Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT) and 111 Project (B14013) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of the lemma for sensitivity analysis in Sect. 3.1

Appendix: Proof of the lemma for sensitivity analysis in Sect. 3.1

Proof

For a general conservative non-linear elastic system, the displacement field in equilibrium state can be determined according to the minimum potential energy principle as:

$$\begin{aligned} {\varvec{u}}\in \hbox {Arg }\mathop {\min }\limits _{v\in \mathcal{U}_{ad} } \left( {{\Pi }\left( {\varvec{v}} \right) } \right) , \end{aligned}$$
(A1)

where \({\varvec{v}}\) is the feasible displacement filed; \({\Pi }\left( {\varvec{v}} \right) \) denotes the total potential energy, i.e.,

$$\begin{aligned} {\Pi }\left( {\varvec{v}} \right)= & {} \mathop \int \nolimits _0^t \mathop \int \nolimits _{\Omega } {\mathbb {C}}\left( {\varvec{v}} \right) :{{\varvec{\upvarepsilon }}}\left( {\varvec{v}} \right) :{ {\dot{{\varvec{\upvarepsilon }}}}}({\varvec{v}})\hbox {dV } \hbox {dt}\nonumber \\&-\mathop {\int }\nolimits _{\Omega } {\varvec{f}}\cdot {\varvec{v}} \hbox {dV}- \mathop {\int }\nolimits _{\mathrm{S}_{\mathrm{t}}} \bar{\varvec{t}} \cdot {\varvec{v}}\hbox {d}S. \end{aligned}$$
(A2)

According to Eqs. (21) and (22), we have:

$$\begin{aligned} {\Pi }\left( {\varvec{u}} \right)= & {} U\left( {\varvec{u}} \right) -\mathop \int \nolimits _{\Omega } {\varvec{f}}\cdot {\varvec{u}}\hbox {dV}-\mathop \int \nolimits _{{\mathrm{S}}_{\mathrm{t}} } {\bar{{\varvec{t}}}}\cdot {\varvec{u}}\hbox {dS}\nonumber \\= & {} \left( {\alpha -1} \right) \left( \mathop \int \nolimits _{\Omega } {\varvec{f}}\cdot {\varvec{u}}\hbox {dV}+\mathop \int \nolimits _{\mathrm{S}_{\mathrm{t}} } {\bar{{\varvec{t}}}}\cdot {\varvec{u}}\hbox {dS}\right) , \end{aligned}$$
(A3)

and

$$\begin{aligned} c\left( {\varvec{u}} \right)= & {} \mathop \int \nolimits _{\Omega } {\varvec{f}}\cdot {\varvec{u}}\hbox {dV}+\mathop \int \nolimits _{\mathrm{S}_{\mathrm{t}} } {\bar{{\varvec{t}}}} \cdot {\varvec{u}}\hbox {dS}=\frac{1}{\alpha -1}{\Pi }\left( {\varvec{u}} \right) \nonumber \\= & {} \frac{1}{\alpha -1}\mathop {\min }\limits _{{\varvec{v}}\in \mathcal{U}_{ad} } \left( {{\Pi }\left( {\varvec{v}} \right) } \right) . \end{aligned}$$
(A4)

Hence, the objective function can be expressed as:

$$\begin{aligned} c= & {} c\left( {{\varvec{u}}\left( {\rho \left( {\varvec{x}} \right) } \right) ,\rho \left( {\varvec{x}} \right) } \right) =\frac{1}{\alpha -1}{\Pi }\left( {{\varvec{u}}\left( {\rho \left( {\varvec{x}} \right) } \right) ,\rho \left( {\varvec{x}} \right) } \right) .\nonumber \\ \end{aligned}$$
(A5)

On the other hand, the first order variation of mean compliance with respect to density field is:

$$\begin{aligned} \delta c\left( {\rho ;\Delta \rho } \right)= & {} \mathop {\lim }\limits _{s\rightarrow 0} \frac{c\left( {{\varvec{u}}\left( {\rho +s\Delta \rho } \right) ,\rho +s\Delta \rho } \right) -c\left( {{\varvec{u}}\left( \rho \right) ,\rho } \right) }{s}\nonumber \\= & {} \mathop {\lim }\limits _{s\rightarrow 0} \frac{c\left( {{\varvec{u}}\left( {\rho +s\Delta \rho } \right) ,\rho +s\Delta \rho } \right) -c\left( {{\varvec{u}}\left( \rho \right) ,\rho +s\Delta \rho } \right) }{s}\nonumber \\&+\mathop {\lim }\limits _{s\rightarrow 0} \frac{c\left( {{\varvec{u}}\left( \rho \right) ,\rho +s\Delta \rho } \right) -c\left( {{\varvec{u}}\left( \rho \right) ,\rho } \right) }{s}\nonumber \\= & {} \frac{\partial c\left( {{\varvec{u}},\rho } \right) }{\partial {\varvec{u}}}\cdot \delta {\varvec{u}}\left( {\rho ;\Delta \rho } \right) +\frac{\partial c\left( {{\varvec{u}},\rho } \right) }{\partial \rho }\cdot \Delta \rho . \end{aligned}$$
(A6)

In the above equation, the first order differentiability of \(c\left( {{\varvec{u}},\rho } \right) \) with respect to arbitrary \(\rho \) and \({\varvec{u}}\) is used.

With use of Eq. (A5), the first term in Eq. (A6) can be simplified as:

$$\begin{aligned} \frac{\partial c\left( {{\varvec{u}},\rho } \right) }{\partial {\varvec{u}}}= & {} \frac{\partial }{\partial {\varvec{u}}}\left( {\frac{1}{\alpha -1}{\Pi }\left( {{\varvec{u}},\rho } \right) } \right) \nonumber \\= & {} \frac{1}{\alpha -1}\frac{\partial {\Pi }\left( {{\varvec{u}},\rho } \right) }{\partial {\varvec{u}}}=\frac{1}{\alpha -1}\left. {\frac{\partial {\Pi }\left( {\varvec{v},\rho } \right) }{\partial \varvec{v}}} \right| _{{\varvec{v}}={\varvec{u}}} =0,\nonumber \\ \end{aligned}$$
(A7)

where the fact of Eq. (A1) is used. Then Eq. (A6) becomes

$$\begin{aligned} \delta c\left( {\rho ;\Delta \rho } \right) =\frac{1}{\alpha -1}\frac{\partial {\Pi }\left( {{\varvec{u}},\rho } \right) }{\partial \rho }\cdot \Delta {\rho }, \end{aligned}$$
(A8)

Furthermore, if finite element method is adopted to discretize the corresponding continuum topology optimization problem, we have:

$$\begin{aligned} {\Pi }\left( {{\varvec{u}},{\varvec{\rho }} } \right) =\alpha {\varvec{u}}^{\top }{} \mathbf{K}\left( {{\varvec{\rho }} ,{\varvec{u}}} \right) {\varvec{u}}-{\varvec{F}}^{\top }{\varvec{u}}, \end{aligned}$$
(A9)

and Eq. (A8) has the following form:

$$\begin{aligned} \delta c\left( {{\varvec{\rho }} ;\Delta {{\rho }}_i } \right) =\left( {\frac{\alpha }{\alpha -1}} \right) {\varvec{u}}^{\top }\cdot \frac{\partial \mathbf{K}\left( {{\varvec{\rho }}, {\varvec{u}}} \right) }{\partial \rho _i }\cdot {\varvec{u}}\cdot \Delta \rho _i , \end{aligned}$$
(A10)

or

$$\begin{aligned} \frac{\partial c}{\partial \rho _i }=\frac{\alpha }{1-\alpha }{\varvec{u}}^{\top }\frac{\partial \mathbf{K}({\varvec{\rho }}, {\varvec{u}})}{\partial \rho _i }{\varvec{u}}, \end{aligned}$$
(A11)

where \(\rho _i \) denotes the density of the ith element.

Finally, it should be pointed out that the non-smooth property of the bi-modulus constitutive relation results in the non-differentiability of the second order of the strain energy density, however, the first order partial derivatives of the strain energy density or the mean compliance are still continuous, i.e., \(w\left( {\varvec{u}} \right) \in H^{1}\left( {\varvec{u}} \right) \), \(c\left( {\varvec{u}} \right) \in H^{1}\left( {\varvec{u}} \right) \). Specifically, in one dimensional case,

$$\begin{aligned} \left. {\frac{\partial w}{\partial \varepsilon }} \right| _{\sigma \rightarrow 0^{+}} =\left. \sigma \right| _{\sigma \rightarrow 0^{+}} =\left. {\frac{\partial w}{\partial \varepsilon }} \right| _{\sigma \rightarrow 0^{-}} =\left. \sigma \right| _{\sigma \rightarrow 0^{-}} =0,\nonumber \\ \end{aligned}$$
(A12)

and

$$\begin{aligned} \left\{ {{\begin{array}{l} {\left. {\frac{\partial ^{2}w}{\partial \varepsilon ^{2}}} \right| _{\sigma \rightarrow 0^{+}} =E^{+},} \\ {\left. {\frac{\partial ^{2}w}{\partial \varepsilon ^{2}}} \right| _{\sigma \rightarrow 0^{-}} =E^{-}.} \\ \end{array} }} \right. \end{aligned}$$
(A13)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Zhang, W., Zhang, Y. et al. Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression. Comput Mech 63, 335–363 (2019). https://doi.org/10.1007/s00466-018-1597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1597-2

Keywords

Navigation