Skip to main content

Advertisement

Log in

Computational modeling of Li-ion batteries

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable Lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  3. Danzer A, Liebau V, Maglia F (2015) Aging of Lithium-ion batteries for electric vehicles. In: Scrosati B, Garche J, Tillmetz W (eds) Advances in battery technologies for electric vehicles. Woodhead Publishing, Cambridge, pp 359–387

    Chapter  Google Scholar 

  4. Salvadori A, Grazioli D (2015) Computer simulation for battery design and lifetime prediction. In: Scrosati B, Garche J, Tillmetz W (eds) Advances in battery technologies for electric vehicles. Woodhead Publishing, Cambridge, pp 417–442

    Chapter  Google Scholar 

  5. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for Lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  Google Scholar 

  6. Zhang J, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sources 196(15):6007–6014

    Article  Google Scholar 

  7. Barre A, Deguilhem B, Grolleau S, Gerard M, Suard F, Riu D (2013) A review on Lithium-ion battery ageing mechanisms and estimations. J Power Sources 241:680–689

    Article  Google Scholar 

  8. Franco AA (2013) Multiscale modelling and numerical simulation of rechargeable Lithium ion batteries: concepts, methods and challenge. Rsc Adv 3(32):13027–13058

    Article  Google Scholar 

  9. Landstorfer M, Jacob T (2013) Mathematical modeling of intercalation batteries at the cell level and beyond. Chem Soc Rev 42:3234–3252

    Article  Google Scholar 

  10. Doerffel D, Sharkh SA (2006) A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and Lithium-ion batteries. J Power Sources 155(2):395–400

    Article  Google Scholar 

  11. Peukert W (1897) Über die abhängigkeit der kapazität von der entladestromstärke bei bleiakkumulatoren. Elektrotech Z 20:20–21

    Google Scholar 

  12. Chen M, Rincon-Mora G (2006) Accurate electrical battery model capable of predicting runtime and IV performance. IEEE Trans Energy Conver 21(2):504–511

    Article  Google Scholar 

  13. Fares RL, Webber ME (2015) Combining a dynamic battery model with high-resolution smart grid data to assess microgrid islanding lifetime. Appl Energy 137:482–489

    Article  Google Scholar 

  14. Rong P, Member S, Pedram M (2006) An analytical model for predicting the remaining battery capacity of Lithium-ion batteries. IEEE Trans VlSI Syst 14(5):441–451

    Article  Google Scholar 

  15. von Srbik MT, Marinescu M, Martinez-Botas RF, Offer GJ (2016) A physically meaningful equivalent circuit network model of a Lithium-ion battery accounting for local electrochemical and thermal behaviour, variable double layer capacitance and degradation. J Power Sources 325:171–184

    Article  Google Scholar 

  16. Widanage WD, Barai A, Chouchelamane GH, Uddin K, McGordon A, Marco J, Jennings P (2016) Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part II: model estimation. J Power Sources 324:61–69

    Article  Google Scholar 

  17. He H, Xiong R, Fan J (2011) Evaluation of Lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4:582–598

    Article  Google Scholar 

  18. Gao L, Liu S, Dougal RA (2002) Dynamic Lithium-ion battery model for system simulation. IEEE Trans Compon Pack Technol 25(3):495–505

    Article  Google Scholar 

  19. Buller S, Thele M (2005) Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications. IEEE Trans Ind Appl 41(3):742–747

    Article  Google Scholar 

  20. Gold S (1997) A PSPICE macromodel for Lithium-ion batteries. In: The 12th annual battery conference on applications and advances, pp 215–222

  21. Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from Lithium-ion toward Lithium–Sulphur. Renew Sustain Energy Rev 56:1008–1021

    Article  Google Scholar 

  22. De Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, New York

    MATH  Google Scholar 

  23. DeHoff R (2006) Thermodynamic in material science. CRC Press, Taylor

    Google Scholar 

  24. Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Shell S (2015) Thermodynamics and statistical mechanics: an integrated approach. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  26. Tadmor EB, Miller RE, Elliott RS (2011) Continuum mechanics and thermodynamics: from fundamental concepts to governing equations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  27. Tagade P, Hariharan KS, Basu S, Verma MKS, Kolake SM, Song T, Oh D, Yeo T, Doo SK (2016) Bayesian calibration for electrochemical thermal model of Lithium-ion cells. J Power Sources 320:296–309

    Article  Google Scholar 

  28. Edouard C, Petit M, Forgez C, Bernard J, Revel R (2016) Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging. J Power Sources 325:482–494

    Article  Google Scholar 

  29. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  30. Bower AF, Guduru PM, Sethuraman VA (2011) A finite strain model of stress, diffusion, plastic flow and electrochemical reactions in a Lithium-ion half-cell. J Mech Phys Solids 59:804–828

    Article  MathSciNet  MATH  Google Scholar 

  31. Aurbach A (2002) The role of surface films on electrodes in Li-ion batteries. In: van Schalkwijk W, Scrosati B (eds) Advances in Lithium-ion batteries. Kluwer Academic, New York

    Google Scholar 

  32. Bower AF, Guduru PR, Chason E (2015) Analytical solutions for composition and stress in spherical elastic-plastic Lithium-ion electrode particles containing a propagating phase boundary. Int J Solids Struct 69–70:328–342

    Article  Google Scholar 

  33. Chon MJ, Sethuraman VA, McCormick A, Srinivasan V, Guduru PR (2011) Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys Rev Lett 107:045503

    Article  Google Scholar 

  34. Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in Lithium-ion batteries. J Electrochem Soc 145(10):3647–3667

    Article  Google Scholar 

  35. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical Lithium battery materials. J Mater Chem 21:9938–9954

    Article  Google Scholar 

  36. Sarre G, Blanchard P, Broussely M (2004) Aging of Lithium-ion batteries. J Power Sources 127:65–71

    Article  Google Scholar 

  37. Vetter J, Novak P, Wagner MR, Veit C, Moeller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in Lithium-ion batteries. J Power Sources 147(1–2):269–281

    Article  Google Scholar 

  38. Wohlfart-Mehrens M, Vogler C, Garche J (2004) Aging mechanism of Lithium cathode materials. J Power Sources 127:58–64

    Article  Google Scholar 

  39. Swallow JG, Woodford WH, McGrogan FP, Ferralis N, Chiang YM, Van Vliet KJ (2014) Effect of electrochemical charging on elastoplastic properties and fracture toughness of \({\rm Li}_{x}{\rm CoO}_{2}\). J Electrochem Soc 161(11):F3084–F3090

    Article  Google Scholar 

  40. Swallow JG, Woodford WH, Chen Y, Lu Q, Kim JJ, Chen D, Chiang YM, Carter WC, Yildiz B, Tuller HL, Van Vliet KJ (2014) Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage. J Electroceram 32:3–27

    Article  Google Scholar 

  41. David WIF, Thackeray MM, De Picciotto LA, Goodenough JB (1987) Structure refinement of the spinel-related phases \({\rm Li}_{2}{\rm Mn}_{2}{\rm O}_{4}\) and \({\rm Li}_{0.2}{\rm Mn}_{2}{\rm O}_{4}\). J Solid State Chem 67(2):316–323

    Article  Google Scholar 

  42. Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of Lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a Lithium ion (shuttlecock) cell. J Electrochem Soc 140(9):2490–2498

    Article  Google Scholar 

  43. Ohzuku T, Matoba N, Sawai K (2001) Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry. J Power Sources, 97–98:73–77. Proceedings of the 10th international meeting on Lithium batteries

  44. Wang H, Jang YI, Huang B, Sadoway DR, Chiang YM (1999) TEM study of electrochemical cycling-induced damage and disorder in \({{\rm LiCoO}}_{2}\) cathodes for rechargeable Lithium batteries. J Electrochem Soc 146(2):473–480

    Article  Google Scholar 

  45. Tucker MC, Reimer JA, Cairns EJ (2002) A study of capacity fade in metal-substituted Lithium manganese oxide spinels. J Electrochem Soc 149(5):A574–A585

    Article  Google Scholar 

  46. Lim MR, Cho WI, Kim KB (2001) Preparation and characterization of gold-codeposited \({{\rm LiMn}}_{2}{{\rm O}}_{4}\) electrodes. J Power Sources 92(1–2):168–176

    Article  Google Scholar 

  47. Wang D, Wu X, Wang Z, Chen L (2005) Cracking causing cyclic instability of \({{\rm LiFePO}}_{4}\) cathode material. J Power Sources 140(1):125–128

    Article  Google Scholar 

  48. Gabrisch H, Wilcox J, Doeff MM (2008) TEM study of fracturing in spherical and plate-like \({\text{ LiFePO }}_{4}\) particles. Electrochem Solid-State Lett 11(3):A25–A29

    Article  Google Scholar 

  49. Kostecki R, McLarnon F (2003) Microprobe study of the effect of Li intercalation on the structure of graphite. J Power Sources, 119–121:550–554. Selected papers presented at the 11th international meeting on Lithium batteries

  50. Hardwick LJ, Marcinek M, Beer L, Kerr JB, Kostecki R (2008) An investigation of the effect of graphite degradation on irreversible capacity in Lithium-ion cells. J Electrochem Soc 155(6):A442–A447

    Article  Google Scholar 

  51. Markervich E, Salitra G, Levi MD, Aurbach D (2005) Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, raman spectroscopy and SEM. J Power Sources, 146(1–2):146–150. Selected papers presented at the 12th international meeting on Lithium batteries12th international meeting on Lithium batteries

  52. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Colossal reversible volume changes in Lithium alloys. Electrochem Solid-State Lett 4(9):A137–A140

    Article  Google Scholar 

  53. Tang M, Albertus P, Newman J (2009) Two-dimensional modeling of Lithium deposition during cell charging. J Electrochem Soc 156:A390–A399

    Article  Google Scholar 

  54. Finegan DP, Scheel M, Robinson JB, Tjaden B, Hunt I, Mason TJ, Millichamp J, Di Michiel M, Offer GJ, Hinds G, Brett DJL, Shearing PR (2015) In-operando high-speed tomography of Lithium-ion batteries during thermal runaway. Nat Commun 6:04

    Article  Google Scholar 

  55. Salvadori A, Grazioli D, Geers MGD, Danilov D, Notten PHL (2015) A novel approach in modeling ionic transport in the electrolyte of (Li-ion) batteries. J Power Sources 293:892–911

    Article  Google Scholar 

  56. Salvadori A, Grazioli D, Magri M, Geers MGD, Danilov D, Notten PHL (2015) On the role of saturation in modeling ionic transport in the electrolyte of (Li-ion) batteries. J Power Sources 294:696–710

    Article  Google Scholar 

  57. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Article  Google Scholar 

  58. Wu W, Xiao X, Huang X, Yan S (2014) A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell. Comput Mater Sci 83:127–136

    Article  Google Scholar 

  59. Valoen LR, Reimers JN (2005) Transport properties of \({{\rm LiPF}}_{6}\)-based Li-ion battery electrolytes. J Electrochem Soc 152(5):A882–A891

    Article  Google Scholar 

  60. Bauer G, Gravemeier V, Wall WA (2011) A 3 D finite element approach for the coupled numerical simulation of electrochemical systems and fluid flow. Int J Numer Meth Eng 86:1339–1359

    Article  MathSciNet  MATH  Google Scholar 

  61. Bauer G, Gravemeier V, Wall WA (2012) A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems. Comput Method Appl Mech Eng 223–224:199–210

    Article  MathSciNet  MATH  Google Scholar 

  62. Latz A, Zausch J (2015) Multiscale modeling of Li-ion batteries: thermal aspects. Beilstein J Nanotechnol 6:987–1007

    Article  Google Scholar 

  63. Danilov D, Notten PHL (2008) Mathematical modeling of ionic transport in the electrolyte of Li-ion batteries. Electrochim Acta 53:5569–5578

    Article  Google Scholar 

  64. Newman J, Thomas-Alyea KE (2004) Electrochemical systems. John Wiley and Sons B.V, New York

    Google Scholar 

  65. Bazant MZ, Chu KT, Bayly BJ (2005) Current-voltage relations for elecrochemical thin films. SIAM J Appl Math 65:1463–1484

    Article  MathSciNet  MATH  Google Scholar 

  66. Dickinson EJF, Limon-Petersen JG, Compton RG (2011) The electroneutrality approximation in electrochemistry. J Solid State Electr 15:1335–1345

    Article  Google Scholar 

  67. Salvadori A, Bosco E, Grazioli D (2014) A computational homogenization approach for Li-ion battery cells. Part 1: formulation. J Mech Phys Solids 65:114–137

    Article  MathSciNet  MATH  Google Scholar 

  68. Salvadori A, Grazioli D, Geers MGD (2015) Governing equations for a two-scale analysis of Li-ion battery cells. Int J Solids Struct 59:90–109

    Article  Google Scholar 

  69. Djian D, Alloin F, Martinet S, Lignier H, Sanchez JY (2007) Lithium-ion batteries with high charge rate capacity: influence of the porous separator. J Power Sources 172:416–421

    Article  Google Scholar 

  70. Huang X (2011) Separator technologies for Lithium-ion batteries. J Solid State Electr 15:649–662

    Article  Google Scholar 

  71. Abraham KME (1993) Directions in secondary Lithium battery research and development. Electrochim Acta 38:1233–1248

    Article  Google Scholar 

  72. Bruggeman DAG (1935) Berechnung verschiedener physikallischer konstanten von heterogenen substanzen. Ann Phys-Leipzig 24:636–664

    Article  Google Scholar 

  73. MacMullin RB, Muccini GA (1956) Characteristics of porous beds and structures. AIChE J 2:393–403

    Article  Google Scholar 

  74. Patel KK, Paulsen JM, Desilvestro J (2003) Numerical simulation of porous networks in relation to battery electrodes and separators. J Power Sources 122:144–152

    Article  Google Scholar 

  75. Thorat IV, Stephenson DE, Zacharias NA, Zaghib K, Harb JN, Wheeler DR (2009) Quantifying tortuosity in porous Li-ion battery materials. J Power Sources 188:592–600

    Article  Google Scholar 

  76. Xiao X, Wu W, Huang X (2010) A multi-scale approach for the stress analysis of polymeric separators in a Li-ion battery. J Power Sources 195:7649–7660

    Article  Google Scholar 

  77. Pinson MB, Bazant MZ (2013) Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J Electrochem Soc 160(2):A243–A250

    Article  Google Scholar 

  78. Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104:4463–4492

    Article  Google Scholar 

  79. Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322

    Article  Google Scholar 

  80. Robinson AL (2014) Solid-state batteries enter EV fray. MRS Bull 39:1046–1047

    Article  Google Scholar 

  81. Scrosati B, Vincent CA (2000) Polymer electrolytes: the key to Lithium polymer batteries. MRS Bull 3:28–30

    Article  Google Scholar 

  82. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929

    Article  Google Scholar 

  83. Fabre SD, Guy-Bouyssou D, Bouillon P, Le Cras F, Delacourta C (2012) Charge/discharge simulation of an all-solid-state thin-film battery using a one-dimensional model. J Electrochem Soc 159(2):A104–A115

    Article  Google Scholar 

  84. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727

    Article  Google Scholar 

  85. Dudney NJ, Neudecker BJ (1999) Solid state thin-film lithium battery systems. Curr Opin Solid State Mater Sci 4:479–482

    Article  Google Scholar 

  86. Danilov D, Niessen RAH, Notten PHL (2011) Modeling all-solid-state Li-ion batteries. J Electrochem Soc 158(3):A215–A222

    Article  Google Scholar 

  87. Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng ZD, Xiao J (2015) Lithium and Lithium ion batteries for applications in microelectronic devices: a review. J Power Sources 286:330–345

    Article  Google Scholar 

  88. Watanabe M, Ogata N (1988) Ionic conductivity of polymer electrolytes and future applications. Br Polym J 20(3):181–192

    Article  Google Scholar 

  89. Hallinan DT Jr, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525

    Article  Google Scholar 

  90. Johansson P (2015) Computational modelling of polymer electrolytes: what do 30 years of research efforts provide us today? Electrochim Acta 175:42–46

    Article  Google Scholar 

  91. Natsiavas PP, Weinberg K, Rosato D, Ortiz M (2016) Effect of prestress on the stability of electrode-electrolyte interfaces during charging in Lithium batteries. J Mech Phys Solids 95:92–111

    Article  MathSciNet  Google Scholar 

  92. Bucci G, Chiang Y-M, Craig Carter W (2016) Formulation of the coupled electrochemical-mechanical boundary-value problem, with applications to transport of multiple charged species. Acta Mater 104:33–51

    Article  Google Scholar 

  93. Thomas KE, Newman J, Darling RM (2002) Matematical modeling of Lithium batteries. In: van Schalkwijk W, Scrosati B (eds) Advances in Lithium-ion batteries. Kluwer Academic, New York

    Google Scholar 

  94. Newman JS, Tobias CW (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109(12):1183–1191

    Article  Google Scholar 

  95. Newman J, Tiedemann WM (1975) Porous-electrode theory with battery applications. AIChE J 21(1):25–41

    Article  Google Scholar 

  96. Doyle M, Newman J (1995) The use of mathematical modeling in the design of Lithium/polymer battery systems. Electrochim Acta 40(13):2191–2196

    Article  Google Scholar 

  97. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the Lithium/polymer/insertion cell. J Electrochem Soc 140:1526–1533

    Article  Google Scholar 

  98. Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual Lithium ion insertion cell. J Electrochem Soc 141(1):1–10

    Article  Google Scholar 

  99. Garcia RE, Chiang YM, Carter WC, Limthongkul P, Bishop CM (2005) Microstructural modeling and design of rechargeable Lithium-ion batteries. J Electrochem Soc 152:255–263

    Article  Google Scholar 

  100. West K, Jacobsen T, Atlung S (1982) Modeling of porous insertion electrodes with liquid electrolyte. J Electrochem Soc 129(7):1480–1485

    Article  Google Scholar 

  101. Christensen J (2010) Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J Electrochem Soc 157:366–380

    Article  Google Scholar 

  102. Ramadesigan V, Northrop PWC, De S, Santhanagopalan S, Braatz RD, Subramanian VR (2012) Modeling and simulation of Lithium-ion batteries from a systems engineering perspective. J Electrochem Soc 159(3):R31–R45

    Article  Google Scholar 

  103. Atlung S, West K, Jacobsen T (1979) Dynamic aspects of solid solution cathodes for electrochemical power sources. J Electrochem Soc 126(8):1311–1321

    Article  Google Scholar 

  104. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic Lithium ion cells. J Electrochem Soc 143(6):1890–1903

    Article  Google Scholar 

  105. Arora P, Doyle M, Gozdz AS, White RE, Newman J (2000) Comparison between computer simulations and experimental data for high-rate discharges of plastic Lithium-ion batteries. J Power Sources 88(2):219–231

    Article  Google Scholar 

  106. Smekens J, Paulsen J, Yang W, Omar N, Deconinck J, Hubin A, Van Mierlo J (2015) A modified multiphysics model for Lithium-ion batteries with a \({{\rm Li}}_{x}{{\rm Ni}}_{1/3}{{\rm Mn}}_{1/3}{{\rm Co}}_{1/3}{{\rm O}}_{2}\) electrode. Electrochim Acta 174:615–624

    Article  Google Scholar 

  107. Mukhopadhyay A, Sheldon BV (2014) Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 63:58–116

    Article  Google Scholar 

  108. Fuller TF, Doyle M, Newman J (1994) Relaxation phenomena in Lithium-ion-insertion cells. J Electrochem Soc 141(4):982–990

    Article  Google Scholar 

  109. Doyle M, Fuentes Y (2003) Computer simulations of a Lithium-ion polymer battery and implications for higher capacity next-generation battery designs. J Electrochem Soc 150(6):A706–A713

    Article  Google Scholar 

  110. Pramanik S, Anwar S (2016) Electrochemical model based charge optimization for Lithium-ion batteries. J Power Sources 313:164–177

    Article  Google Scholar 

  111. Thomas KE, Newman J (2003) Thermal modeling of porous insertion electrodes. J Electrochem Soc 150(2):A176–A192

    Article  Google Scholar 

  112. Renganathan S, Sikha G, Santhanagopalan S, White RE (2010) Theoretical analysis of stresses in a Lithium ion cell. J Electrochem Soc 157:155–163

    Article  Google Scholar 

  113. Arunachalam H, Onori S, Battiato I (2015) On veracity of macroscopic Lithium-ion battery models. J Electrochem Soc 10:A1940–A1951

    Article  Google Scholar 

  114. Garcia RE, Chiang YM (2007) Spatially resolved modeling of microstructurally complex battery architectures. J Electrochem Soc 154(9):A856–A864

    Article  Google Scholar 

  115. Wang CW, Sastry AM (2007) Mesoscale modeling of a Li-ion polymer cell. J Electrochem Soc 154:A1035–A1047

    Article  Google Scholar 

  116. Purkayastha RT, McMeeking RM (2012) An integrated 2-D model of a Lithium ion battery: the effect of material parameters and morphology on storage particle stress. Comput Mech 50:209–227

    Article  MathSciNet  MATH  Google Scholar 

  117. Stern O (1924) Zur theorie der elektrolytischen doppelschicht. Z Elektrochem 30:508–516

    Google Scholar 

  118. Chapman DL (1913) A contribution to the theory of electrocapillarity. Lond Edinb Dublin Philos Mag J Sci 25:475–481

    Article  MATH  Google Scholar 

  119. Gouy M (1910) Sur la constitution de la charge electrique a la surface d’un electrolyte. J Phys Theory Appl 9(1):457–468

    Article  MATH  Google Scholar 

  120. Hamann CH, Hamnett A, Vielstich W (2007) Electrochemistry. Wiley, New York

    Google Scholar 

  121. Bazant MZ, Kilic MS, Storey B, Ajdari A (2009) Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv Colloid Interfac 152:48–88

    Article  Google Scholar 

  122. Biesheuvel PM, van Soestbergenb M, Bazant MZ (2009) Imposed currents in galvanic cells. Electrochim Acta 54:4857–4871

    Article  Google Scholar 

  123. Marcicki J, Conlisk AT, Rizzoni G (2014) A Lithium-ion battery model including electrical double layer effects. J Power Sources 125:157–169

    Article  Google Scholar 

  124. Bazant MZ, Thornton K, Ajdari A (2004) Diffuse-charge dynamics in electrochemical systems. Phys Rev E 70:021506

    Article  Google Scholar 

  125. Frumkin A, Petry O, Damaskin B (1970) The notion of the electrode charge and the Lippmann equation. J Electroanal Chem 27(1):81–100

    Article  Google Scholar 

  126. Rubi JM, Kjelstrup S (2003) Mesoscopic nonequilibrium thermodynamics gives the same thermodynamic basis to Butler–Volmer and Nernst equations. J Phys Chem B 107:13471–13477

    Article  Google Scholar 

  127. Bower AF, Guduru PM (2012) A simple finite element model of diffusion, finite deformation, plasticity and fracture in Lithium ion insertion electrode materials. Model Simul Mater Sci Eng 20:045004

    Article  Google Scholar 

  128. Bucci G, Nadimpalli SPV, Sethuraman VA, Bower AF, Guduru PR (2014) Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. J Mech Phys Solids 62:276–294

    Article  Google Scholar 

  129. Dao TS, Vyasarayani CP, McPhee J (2012) Simplification and order reduction of Lithium-ion battery model based on porous-electrode theory. J Power Sources 198:329–337

    Article  Google Scholar 

  130. Streeter I, Compton RG (2008) Numerical simulation of potential step chronoamperometry at low concentrations of supporting electrolyte. J Phys Chem C 112:13716–13728

    Article  Google Scholar 

  131. Dreyer W, Guhlke C, Landstorfer M (2014) A mixture theory of electrolytes containing solvation effects. Electrochem Commun 43:75–78

    Article  Google Scholar 

  132. Gillman A, Amadio G, Matouš K, Jackson TL (2015) Third-order thermo-mechanical properties for packs of platonic solids using statistical micromechanics. Proc R Soc A 241:20150060

    Article  Google Scholar 

  133. Cheng YT, Verbrugge MW (2009) Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J Power Sources 190:453–460

    Article  Google Scholar 

  134. Cheng YT, Verbrugge MW (2010) Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J Electrochem Soc 4:508–516

    Article  Google Scholar 

  135. Christensen J, Newman J (2006) Stress generation and fracture in Lithium insertion materials. J Solid State Electr 10:293–319

    Article  Google Scholar 

  136. Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to Lithium ion batteries. J Mech Phys Solids 60:1280–1295

    Article  MathSciNet  Google Scholar 

  137. Deshpande R, Cheng YT, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195:5081–5088

    Article  Google Scholar 

  138. Deshpande R, Cheng YT, Verbrugge MW, Timmons A (2011) Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J Electrochem Soc 158(6):A718–A724

    Article  Google Scholar 

  139. Golmon S, Maute K, Lee SH, Dunn ML (2010) Stress generation in silicon particles during Lithium insertion. Appl Phys Lett 97:033111

    Article  Google Scholar 

  140. Miehe C, Dal H (2015) Computational electro-chemo-mechanics of Lithium-ion battery electrodes at finite strains. Comput Mech 55:303–325

    Article  MathSciNet  MATH  Google Scholar 

  141. Purkayastha RT, McMeeking RM (2013) A parameter study of intercalation of Lithium into storage particles in a Lithium-ion battery. Comput Mater Sci 80:2–14

    Article  Google Scholar 

  142. Zhang X, Sastry AM, Shyy W (2008) Intercalation-induced stress and heat generation within single Lithium-ion battery chatode particles. J Electrochem Soc 155(7):A542–A552

    Article  Google Scholar 

  143. Zhang X, Shyy W, Sastry AM (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154:A910–A916

    Article  Google Scholar 

  144. Zhao K, Pharr M, Cai S, Vlassak JJ, Suo Z (2011) Large plastic deformation in high-capacity Lithium-ion batteries caused by charge and discharge. J Am Ceram Soc 94(S1):S226–S235

    Article  Google Scholar 

  145. Awarke A, Lauer S, Wittler M, Pischinger S (2011) Quantifying the effects of strains on the conductivity and porosity of \({{\rm LiFePO}}_{4}\) based Li-ion composite cathodes using a multi-scale approach. Comput Mater Sci 50(3):871–879

    Article  Google Scholar 

  146. Gupta A, Seo JH, Zhang X, Du W, Sastry AM, Shyy W (2011) Effective transport properties of \({{\rm LiMn}}_{2}{{\rm O}}_{4}\) electrode via particle-scale modeling. J Electrochem Soc 158(5):A487–A497

    Article  Google Scholar 

  147. Roberts SA, Brunini VE, Long KN, Grillet AM (2014) A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in Lithium-ion electrodes. J Electrochem Soc 161(11):F3052–F3059

    Article  Google Scholar 

  148. Stershic AJ, Simunovic S, Nanda J (2015) Modeling the evolution of Lithium-ion particle contact distributions using a fabric tensor approach. J Power Sources 297:540–550

    Article  Google Scholar 

  149. Ender M, Joos J, Carraro T, Ivers-Tiffee E (2011) Three dimensional reconstruction of a composite cathode for Lithium-ion cells. Electrochem Commun 13(2):166–168

    Article  Google Scholar 

  150. Hutzenlaub T, Thiele S, Zengerle R, Ziegler C (2012) Three-dimensional reconstruction of a \({{\rm LiCoO}}_{2}\) Li-ion battery cathode. Electrochem Solid State Lett 15(3):A33–A36

    Article  Google Scholar 

  151. Hutzenlaub T, Thiele S, Paust R, Spotnitz RM, Zengerle R, Walchshofer C (2014) Three dimensional electrochemical Li-ion battery modeling featuring a focused ion-beam/scanning electrode microscopy based three-phase reconstruction of a \({{\rm LiCoO}}_{2}\) cathode. Electrochim Acta 115:131–139

    Article  Google Scholar 

  152. Malave V, Berger J, Zhu H, Kee RJ (2014) A computational model of the mechanical behavior within reconstructed \({{\rm Li}}_{x}{{\rm CoO}}_{2}\) Li-ion battery cathode particles. Electrochim Acta 130:707–717

    Article  Google Scholar 

  153. Malave V, Berger JR, Martin PA (2014) Concentration-dependent chemical expansion in Lithium-ion battery cathode particles. J Appl Mech 81(9):091005

    Article  Google Scholar 

  154. Stephenson DE, Hartman EM, Harb JN, Wheeler DR (2007) Modeling of particle-particle interactions in porous cathodes for Lithium-ion batteries. J Electrochem Soc 154:A1146–A1155

    Article  Google Scholar 

  155. Wieser C, Prill T, Schladitz K (2015) Multiscale simulation process and application to additives in porous composite battery electrodes. J Power Sources 277:64–75

    Article  Google Scholar 

  156. Babu SK, Mohamed AI, Whitacre JF, Litster S (2015) Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in Lithium-ion battery cathodes. J Power Sources 283:314–319

    Article  Google Scholar 

  157. Shearing PR, Howard LE, Jorgensen P, Brandon NP, Harris SJ (2010) Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem Commun 12(3):374–377

    Article  Google Scholar 

  158. Zielke L, Hutzenlaub T, Wheeler DR, Manke I, Arlt T, Paust N, Zengerle R, Thiele S (2014) A combination of X-Ray tomography and carbon binder modeling: reconstructing the three phases of \({{\rm LiCoO}}_{2}\) Li-ion battery cathodes. Adv Energy Mater 4(8):1301617

    Article  Google Scholar 

  159. Zielke L, Hutzenlaub T, Wheeler DR, Chao CW, Manke I, Hilger A, Paust N, Zengerle R, Thiele S (2015) Three-phase multiscale modeling of a \({{\rm LiCoO}}_{2}\) cathode: combining the advantages of FIB–SEM imaging and X-Ray tomography. Adv Energy Mater 5:1401612

    Article  Google Scholar 

  160. Wilson JR, Cronin JS, Barnett SA, Harris SJ (2011) Measurements of three-dimensional microstructure in a \({{\rm LiCoO}}_{2}\) positive electrode. J Power Sources 196:3443–3447

    Article  Google Scholar 

  161. Liu Z, Cronin JS, Chen-Wiegart Y, Wilson JR, Yakal-Kremski KJ, Wang J, Faber KT, Barnett SA (2013) Three-dimensional morphological measurements of \({{\rm LiCoO}}_{2}\) and \({{\rm LiCoO}}_{2}/{{\rm Li}}({{\rm Ni}}_{1/3}{{\rm Mn}}_{1/3}{{\rm Co}}_{1/3}){{\rm O}}_{2}\) Lithium-ion battery cathodes. J Power Sources 227:267–274

    Article  Google Scholar 

  162. Wiedemann AH, Goldin GM, Barnett SA, Zhu H, Kee RJ (2013) Effects of three-dimensional cathode microstructure on the performance of Lithium-ion battery cathodes. Electrochim Acta 88:580–588

    Article  Google Scholar 

  163. Liu Z, Chen-Wiegart Y, Wang J, Barnett SA, Faber KT (2016) Three-phase 3d reconstructions of a \({{\rm LiCoO}}_{2}\) cathode via FIB–SEM tomography. Microsc Microanal 22:140–148

    Article  Google Scholar 

  164. Newman J, Tiedemann WM (1995) Temperature rise in a battery module with constant heat generation. J Electrochem Soc 142(4):1054–1057

    Article  Google Scholar 

  165. Pals CR, Newman J (1995) Thermal modeling of the Lithium/polymer battery. J Electrochem Soc 142(10):3274–3281

    Article  Google Scholar 

  166. Rao L, Newman J (1997) Heat-generation rate and general energy balance for insertion battery systems. J Electrochem Soc 144(8):2697–2704

    Article  Google Scholar 

  167. Jhua CY, Wang YW, Wen CY, Shu CM (2012) Thermal runaway potential of \({{\rm LiCoO}}_{2}\) and \({{\rm Li(Ni}}_{1/3}{{\rm Co}}_{1/3}{{\rm Mn}}_{1/3}){{\rm O}}_{2}\) batteries determined with adiabatic calorimetry methodology. Appl Energy 100:127–131

    Article  Google Scholar 

  168. Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F (2016) Safety focused modeling of Lithium-ion batteries: a review. J Power Sources 306:178–192

    Article  Google Scholar 

  169. Fleckenstein M, Bohlen O, Roscher MA, Baeker B (2011) Current density and state of charge inhomogeneities in Li-ion battery cells with \({{\rm LiFePO}}_{4}\) as cathode material due to temperature gradients. J Power Sources 196:4769–4778

    Article  Google Scholar 

  170. Latz A, Zausch J (2011) Thermodynamic consistent transport theory of Li-ion batteries. J Power Sources 196:3296–3302

    Article  MATH  Google Scholar 

  171. Rothe S, Schmidt JH, Hartmann S (2015) Analytical and numerical treatment of electro-thermo-mechanical coupling. Arch Appl Mech 85:1245–1264

    Article  MATH  Google Scholar 

  172. Baghdadi I, Briat O, Delétage JY, Gyan P, Vinassa JM (2016) Lithium battery aging model based on Dakin’s degradation approach. J Power Sources 325:273–285

    Article  Google Scholar 

  173. Darling R, Newman J (1998) Modeling side reactions in composite \({{\rm Li}}_{y}{{\rm Mn}}_{2}{{\rm O}}_{4}\) electrodes. J Electrochem Soc 145(3):990–998

    Article  Google Scholar 

  174. Belt JR, Ho CD, Motloch CG, Miller TJ, Duong TQ (2003) A capacity and power fade study of Li-ion cells during life cycle testing. J Power Sources 123(2):241–246

    Article  Google Scholar 

  175. Bloom I, Cole BW, Sohn JJ, Jones SA, Polzin EG, Battaglia VS, Henriksen GL, Motloch C, Richardson R, Unkelhaeuser T, Ingersoll D, Case HL (2001) An accelerated calendar and cycle life study of Li-ion cells. J Power Sources 101(2):238–247

    Article  Google Scholar 

  176. Asakura K, Shimomura M, Shodai T (2003) Study of life evaluation methods for Li-ion batteries for backup applications. J Power Sources, 119–121:902–905. Selected papers presented at the 11th international meeting on Lithium batteries

  177. Safari M, Delacourt C (2011) Simulation-based analysis of aging phenomena in a commercial graphite/\({{\rm LiFePO}}_{4}\) cell. J Electrochem Soc 158(12):A1436–A1447

    Article  Google Scholar 

  178. Wu YP, Rahm E, Holze R (2003) Carbon anode materials for Lithium ion batteries. J Power Sources 114(2):228–236

    Article  Google Scholar 

  179. Fong R, von Sacken U, Dahn JR (1990) Studies of Lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137(7):2009–2013

    Article  Google Scholar 

  180. Christensen J, Newman J (2004) A mathematical model for the Lithium-ion negative electrode solid electrolyte interphase. J Electrochem Soc 151(11):A1977–A1988

    Article  Google Scholar 

  181. Deng J, Wagner GJ, Muller RP (2013) Phase field modeling of solid electrolyte interface formation in Lithium ion batteries. J Electrochem Soc 160(3):A487–A496

    Article  Google Scholar 

  182. Li D, Danilov D, Zhang Z, Chen H, Yang Y, Notten PHL (2015) Modeling the SEI-formation on graphite electrodes in \({{\rm LiFePO}}_{4}\) batteries. J Electrochem Soc 162(6):A858–A869

    Article  Google Scholar 

  183. Liu L, Park J, Lin X, Sastry AM, Lu W (2014) A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. J Power Sources 268:482–490

    Article  Google Scholar 

  184. Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267

    Article  Google Scholar 

  185. Ploehn HJ, Ramadass P, White RE (2004) Solvent diffusion model for aging of Lithium-ion battery cells. J Electrochem Soc 151(3):A456–A462

    Article  Google Scholar 

  186. Rejovitzky E, Di Leo CV, Anand L (2015) A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery. J Mech Phys Solids 78:210–230

    Article  MathSciNet  Google Scholar 

  187. Shin H, Park J, Han S, Sastry AM, Lu W (2015) Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: experimental and computational studies. J Power Sources 277:169–179

    Article  Google Scholar 

  188. Shin H, Park J, Sastry AM, Lu W (2015) Degradation of the solid electrolyte interphase induced by the deposition of manganese ions. J Power Sources 284:416–427

    Article  Google Scholar 

  189. Tang M, Lu S, Newman J (2012) Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon. J Electrochem Soc 159(11):A1775–A1785

    Article  Google Scholar 

  190. Xie Y, Li J, Yuan C (2014) Multiphysics modeling of Lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics. J Power Sources 248:172–179

    Article  Google Scholar 

  191. Ekström H, Lindbergh G (2015) A model for predicting capacity fade due to SEI formation in a commercial graphite/\({{\rm LiFePO}}_{4}\) cell. J Electrochem Soc 162(6):A1003–A1007

    Article  Google Scholar 

  192. Bothe D (2011) On the Maxwell–Stefan approach to multicomponent diffusion. Prog Nonlin 80:81–93

    MathSciNet  MATH  Google Scholar 

  193. Lam SH (2006) Multicomponent diffusion revisited. Phys Fluids 18:073101

    Article  Google Scholar 

  194. Cheng YT, Verbrugge MW (2008) The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J Appl Phys 104:083521

    Article  Google Scholar 

  195. Higa K, Srinivasan V (2015) Stress and strain in silicon electrode models. J Electrochem Soc 162(6):A1111–A1122

    Article  Google Scholar 

  196. Huggins RA, Nix WD (2000) decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6:57–63

    Article  Google Scholar 

  197. Zhao K, Pharr M, Cai S, Vlassak JJ, Suo Z (2010) Fracture of electrodes in Lithium-ion batteries caused fast charging. J Appl Phys 108:073517

    Article  Google Scholar 

  198. Aifantis KE, Dempsey JP (2005) Stable crack growth in nanostructured Li-batteries. J Power Sources 143:203–211

    Article  Google Scholar 

  199. Aifantis KE, Hackney SA, Dempsey JP (2007) Design criteria for nanostructured Li-ion batteries. J Power Sources 165:874–879

    Article  Google Scholar 

  200. Hu Y, Zhao X, Suo Z (2010) Averting cracks caused by insertion reaction in Lithium-ion batteries. J Mater Res 25(6):1007–1010

    Article  Google Scholar 

  201. Ryu I, Choi JW, Cui Y, Nix WD (2011) Size-dependent fracture of Si nanowire battery anodes. J Mech Phys Solids 59:1717–1730

    Article  Google Scholar 

  202. Woodford H, Chiang YM, Carter WC (2010) Electrochemical shock of intercalation electrodes: a fracture mechanics analysis. J Electrochem Soc 157(10):A1052–A1059

    Article  Google Scholar 

  203. Zhao K, Pharr M, Vlassak JJ, Suo Z (2011) Inelastic hosts as electrodes for high-capacity Lithium-ion batteries. J Appl Phys 109:016110

    Article  Google Scholar 

  204. Salvadori A (2008) A plasticity framework for (linear elastic) fracture mechanics. J Mech Phys Solids 56:2092–2116

    Article  MathSciNet  MATH  Google Scholar 

  205. Salvadori A (2010) Crack kinking in brittle materials. J Mech Phys Solids 58:1835–1846

    Article  MathSciNet  MATH  Google Scholar 

  206. Salvadori A, Fantoni F (2013) Minimum theorems in 3D incremental linear elastic fracture mechanics. Int J Fract 184(1):57–74

    Article  Google Scholar 

  207. Salvador A, Fantoni F (2016) Fracture propagation in brittle materials as a standard dissipative process: general theorems and crack tracking algorithms. J Mech Phys Solids 59:121–144

    MathSciNet  Google Scholar 

  208. Salvadori A, Giacomini A (2013) The most dangerous flaw orientation in brittle materials and structures. Int J Fract 183(1):19–28

    Article  Google Scholar 

  209. Bhandakkar TK, Gao H (2010) Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int J Solids Struct 47:1424–1434

    Article  MATH  Google Scholar 

  210. Bhandakkar TK, Gao H (2011) Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses. Int J Solids Struct 48:2304–2309

    Article  Google Scholar 

  211. Miehe C, Schaenzel LM, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part I. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Method Appl Mech Eng 294:449–485

    Article  MathSciNet  Google Scholar 

  212. Miehe C, Hofacker M, Schaenzel LM, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids. Comput Method Appl Mech Eng 294:486–522

    Article  MathSciNet  Google Scholar 

  213. Miehe C, Dal H, Raina A (2016) A phase field model for chemo-mechanical induced fracture in Lithium-ion battery electrode particles. Int J Numer Meth Eng 106(9):683–711

    Article  MathSciNet  Google Scholar 

  214. Zuo P, Zhao YP (2015) A phase field model coupling Lithium diffusion and stress evolution with crack propagation and application in Lithium ion batteries. Phys Chem Chem Phys 17:287–297

    Article  Google Scholar 

  215. Miehe C, Mauthe S (2016) Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput Method Appl Mech Eng 304:619–655

    Article  MathSciNet  Google Scholar 

  216. Zhao Y, Xu BX, Stein P, Gross D (2016) Phase-field study of electrochemical reactions at exterior and interior interfaces in Li-ion battery electrode particles. Comput Method Appl Mech Eng 14:1–28

    Article  Google Scholar 

  217. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li extraction in storage particles using a fracture phase field approach. J Electrochem Soc 163(2):A102–A118

    Article  Google Scholar 

  218. O’Connor DT, Welland MJ, Liu WK, Voorhees PV (2016) Phase transformation and fracture in single \({{\rm Li}}_{x}{{\rm FePO}}_{4}\) cathode particles: a phase-field approach to Li-ion intercalation and fracture. Model Simul Mater Sci Eng 24(3):035020

    Article  Google Scholar 

  219. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J Mech Phys Solids 92:313–344

    Article  Google Scholar 

  220. Christensen J, Newman J (2006) A mathematical model of stress generation and fracture in Lithium manganese oxide. J Electrochem Soc 153(6):A1019–A1030

    Article  Google Scholar 

  221. Verbrugge MW, Cheng YT (2009) Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J Electrochem Soc 156:A927–A937

    Article  Google Scholar 

  222. Gao YF, Zhou M (2011) Strong stress-enhanced diffusion in amorphus Lithium alloy nanowire electrodes. J Appl Phys 109:014310

    Article  Google Scholar 

  223. Li JCM (1978) Physical chemistry of some microstructural phenomena. Metall Trans 9A:1353–1380

    Google Scholar 

  224. Prussin S (1961) Generation and distribution of dislocations by solute diffusion. J Appl Phys 32(10):1876–1881

    Article  Google Scholar 

  225. Lee S, Wang WL, Chen JR (2000) Diffusion-induced stresses in a hollow cylinder: constant surface stresses. Mater Chem Phys 64(2):123–130

    Article  Google Scholar 

  226. Yang F (2005) Interaction between diffusion and chemical stresses. Mater Sci Eng A 409:153–159

    Article  Google Scholar 

  227. Larche F, Cahn JW (1973) A linear theory of thermochemical equilibrium under stress. Acta Metall Mater 21:1051–1063

    Article  Google Scholar 

  228. Larche F, Cahn JW (1978) Non linear theory of thermochemical equilibrium under stress. Acta Metall Mater 26:53–60

    Article  Google Scholar 

  229. Purkayastha RT, McMeeking RM (2012) A linearized model for Lithium ion batteries and maps for their performance and failure. J Appl Mech 79:1–16

    Article  Google Scholar 

  230. Seo JH, Chung M, Park M, Han SW, Zhang X, Sastry AM (2011) Generation of realistic structures and simulations of internal stress: a numerical/AFM study of \({{\rm LiMn}}_{2}{{\rm O}}_{4}\) particles. J Electrochem Soc 158(4):A434–A442

    Article  Google Scholar 

  231. Wu CH (2001) The role of Eshelby stress in composition-generated and stress-assisted diffusion. J Mech Phys Solids 49(8):1771–1794

    Article  MATH  Google Scholar 

  232. Haftbaradaran H, Song J, Curtin WA, Gao H (2011) Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J Power Sources 196:361–370

    Article  Google Scholar 

  233. Wang JW, He Y, Fan F, Liu XH, Xia S, Liu Y, Harris CT, Li H, Huang JY, Mao SX, Zhu T (2013) Two-phase electrochemical lithiation in amorphous silicon. Nano Lett 13(2):709–715

    Article  Google Scholar 

  234. Brassart L, Zhao K, Suo Z (2013) Cyclic plasticity and shakedown in high-capacity electrodes of Lithium-ion batteries. Int J SolidS Struct 50:1120–1129

    Article  Google Scholar 

  235. Sethuraman VA, Srinivasan V, Bower AF, Guduru PR (2010) In situ measurements of stress-potential coupling in lithiated silicon. J Electrochem Soc 157:1253–1261

    Article  Google Scholar 

  236. Wang J, Chen-Wiegart Y, Wang J (2014) In operando tracking phase transformation evolution of Lithium iron phosphate with hard X-ray microscopy. Nat Commun 5:1453–1459

    Google Scholar 

  237. Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the \({{\rm LiFePO}}_{4}\) to \({{\rm FePO}}_{4}\) phase transition. Electrochem Solid State Lett 9:A295

    Article  Google Scholar 

  238. Laffont L, Delacourt C, Gibot P, Wu M, Kooyman P, Masquelier C, Tarascon J (2006) Study of the \({{\rm LiFePO}}_{4}/{{\rm FePO}}_{4}\) two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18(23):5520–5529

    Article  Google Scholar 

  239. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    Article  Google Scholar 

  240. Thornton K, Agren J, Voorhees PW (2003) Modelling the evolution of phase boundaries in solids at the meso-and nano-scales. Acta Mater 51(19):5675–5710

    Article  Google Scholar 

  241. Srinivasan V, Newman J (2004) Discharge model for the Lithium iron-phosphate electrode. J Electrochem Soc 151(10):A1517–A1529

    Article  Google Scholar 

  242. Subramanian VR, Ploehn HJ, White RE (2000) Shrinking core model for the discharge of a metal hydride electrode. J Electrochem Soc 147(8):2868–2873

    Article  Google Scholar 

  243. Zhang Q, White RE (2007) Moving boundary model for the discharge of a \({{\rm LiCoO}}_{2}\) electrode. J Electrochem Soc 154(6):A587–A596

    Article  Google Scholar 

  244. Gao F, Hong W (2016) Phase-field model for the two-phase lithiation of silicon. J Mech Phys Solids 94:18–32

    Article  MathSciNet  Google Scholar 

  245. Singh GK, Ceder G, Bazant MZ (2008) Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in \({{\rm LiFePO}}_{4}\). Electrochim Acta 53:7599–7613

    Article  Google Scholar 

  246. Burch D, Singh GK, Ceder G, Bazant MZ (2008) Phase-transformation wave dynamics in \({{\rm LiFePO}}_{4}\). Solid State Phenom 139:95–100

    Article  Google Scholar 

  247. Han BC, Van der Ven A, Morgan D, Ceder G (2004) Electrochemical modeling of intercalation processes with phase field models. Electrochim Acta 49(26):4691–4699

    Article  Google Scholar 

  248. Tang M, Craig Carter W, Belak JF, Chiang YM (2010) Modeling the competing phase transition pathways in nanoscale olivine electrodes. Electrochim Acta 56(2):969–976

    Article  Google Scholar 

  249. Tang M, Huang H-Y, Meethong N, Kao Y-H, Carter WC, Chiang Y-M (2009) Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: application to nanoscale olivines. Chem Mater 21(8):1557–1571

    Article  Google Scholar 

  250. Cogswell DA, Bazant MZ (2012) Coherency strain and the kinetics of phase separation in \({{\rm LiFePO}}_{4}\) nanoparticles. ACS Nano 6(3):2215–2225

    Article  Google Scholar 

  251. Anand L (2012) A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J Mech Phys Solids 60(12):1983–2002

    Article  MathSciNet  MATH  Google Scholar 

  252. Di Leo C, Rejovitzky E, Anand L (2014) A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J Mech Phys Solids 70:1–29

    Article  MathSciNet  MATH  Google Scholar 

  253. Areias P, Samaniego E, Rabczuk T (2016) A staggered approach for the coupling of Cahn–Hilliard type diffusion and finite strain elasticity. Comput Mech 57(2):339–351

    Article  MathSciNet  MATH  Google Scholar 

  254. Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in Lithium ion batteries. Acta Mater 61:4354–4364

    Article  Google Scholar 

  255. Yang H, Fan F, Liang W, Guo X, Zhu T, Zhang S (2014) A chemo-mechanical model of lithiation in silicon. J Mech Phys Solids 70:349–361

    Article  Google Scholar 

  256. Drozdov AD (2014) A model for the mechanical response of electrode particles induced by Lithium diffusion in Li-ion batteries. Acta Mech 225:2987–3005

    Article  MathSciNet  MATH  Google Scholar 

  257. Drozdov AD (2014) Viscoplastic response of electrode particles in Li-ion batteries driven by insertion of Lithium. Int J Solids Struct 51:690–705

    Article  Google Scholar 

  258. Cui Z, Gao F, Qu J (2013) Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in Lithium ion batteries. J Mech Phys Solids 61:293–310

    Article  MathSciNet  Google Scholar 

  259. Zhao K, Pharr M, Wan Q, Wang WL, Kaxiras E, Vlassak JJ, Suo Z (2012) Concurrent reaction and plasticity during initial lithiation of crystalline silicon in Lithium-ion batteries. J Electrochem Soc 159:A238–A243

    Article  Google Scholar 

  260. Yang H, Huang S, Huang X, Fan F, Liang W, Liu XH, Chen LQ, Huang JY, Li J, Zhu T, Zhang S (2012) Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett 12(4):1953–1958

    Article  Google Scholar 

  261. Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  MathSciNet  MATH  Google Scholar 

  262. Shan Z, Gokhale AM (2002) Representative volume element for non-uniform micro-structure. Comput Mater Sci 24(3):361–379

    Article  Google Scholar 

  263. Swaminathan S, Ghosh S, Pagano NJ (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: part I-without damage. J Compos Mater 40(7):583–604

    Article  Google Scholar 

  264. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  MATH  Google Scholar 

  265. Willis JR (1980) Elasticity theory of composites. Defense Technical Information Center, Report Date : MAR 1980

  266. Stephenson DE, Walker BC, Skelton CB, Gorzkowski EP, Rowenhorst DJ, Wheeler DR (2011) Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes. J Electrochem Soc 158:A781–A789

    Article  Google Scholar 

  267. Ferguson TR, Bazant MZ (2012) Nonequilibrium thermodynamics of porous electrodes. J Electrochem Soc 159(12):A1967–A1985

    Article  Google Scholar 

  268. Schmuck M, Bazant MZ (2015) Homogenization of the Poisson–Nernst–Planck equations for ion transport in charged porous media. SIAM J Appl Math 75(3):1369–1401

    Article  MathSciNet  MATH  Google Scholar 

  269. Lee S, Sastry AM, Park J (2016) Study on microstructures of electrodes in Lithium-ion batteries using variational multi-scale enrichment. J Power Sources 315:96–110

    Article  Google Scholar 

  270. Golmon S, Maute K, Dunn ML (2009) Numerical modeling of electrochemical-mechanical interactions in Lithium polymer batteries. Comput Struct 87:1567–1579

    Article  Google Scholar 

  271. Golmon S, Maute K, Dunn ML (2012) Multiscale design optimization of Lithium ion batteries using adjoint sensitivity analysis. Int J Numer Meth Eng 92:475–494

    Article  MathSciNet  Google Scholar 

  272. Golmon S, Maute K, Dunn ML (2014) A design optimization methodology for \({{\rm Li}}^{+}\) batteries. J Power Sources 253:239–250

    Article  Google Scholar 

  273. Allu S, Kalnaus S, Simunovic S, Nanda J, Turner JA, Pannala S (2016) A three-dimensional meso-macroscopic model for Li-ion intercalation batteries. J Power Sources 325:42–50

    Article  Google Scholar 

  274. Suquet PM (1985) Local and global aspects in the mathematical theory of plasticity. In: Sawczuk A, Bianchi G (eds) Plasticity today: modeling, methods and applications. Elsevier Applied Science Publishers, London, pp 279–310

    Google Scholar 

  275. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization. J Comput Appl Math 234:2175–2182

    Article  MATH  Google Scholar 

  276. Kovetz A (1989) The principles of electromagnetic theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  277. Huggins RA (2010) Energy storage. Springer, New York

    Book  Google Scholar 

  278. Franco AA, Doublet ML, Bessler WGB (eds) (2016) physical multiscale modeling and numerical symulation of electrochemical devices for energy conversion and storage. Springer, London

  279. Rahman MA, Anwar S, Izadian A (2016) Electrochemical model parameter identification of a Lithium-ion battery using particle swarm optimization method. J Power Sources 307:86–97

    Article  Google Scholar 

  280. Takahashi K, Higa K, Mair S, Chintapalli M, Balsara N, Srinivasan V (2016) Mechanical degradation of graphite/PVDF composite electrodes: a model-experimental study. J Electrochem Soc 163(3):A385–A395

    Article  Google Scholar 

Download references

Acknowledgments

We express our deep gratitude to Prof. B. Scrosati, who inspired us and proposed to write this review. He also revised part of the manuscript. FIB–SEM analyses in Fig. 4 were made in cooperation with J. Pauls, A. Mukasyan, J. Schaefer, and K. Matouš at the University of Notre Dame, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salvadori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grazioli, D., Magri, M. & Salvadori, A. Computational modeling of Li-ion batteries. Comput Mech 58, 889–909 (2016). https://doi.org/10.1007/s00466-016-1325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1325-8

Keywords

Navigation