Skip to main content

Abstract

In the field of energy materials, the computational modeling of electrochemical devices such as fuel cells, rechargeable batteries, photovoltaic cells, or photo-batteries that combine energy conversion and storage represent a great challenge for theoreticians. Given the wide variety of issues related to the modeling of each of these devices, this chapter is restricted to the study of rechargeable batteries (accumulators) and, more particularly, Li-ion batteries. The aim of this chapter is to emphasize some of the key problems related to the theoretical and computational treatment of these complex systems and to present some of the state-of-the-art computational techniques and methodologies being developed in this area to meet one of the greatest challenges of our century in terms of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The acceptance criterium is such that (i) if \(\Delta E \le 0\), the new structure is used as the new guess structure or (ii) if \(\Delta E > 0\) the new structure is assigned to a probability \(P(E) = {\text{e}}^{{ - (\Delta E/k_{B} T)}}\), thus leading to a canonical ensemble of atomic configurations at T.

  2. 2.

    We should note here that not only the Li+ ions but also the constituting elements of the host matrix can show some disorder in the structure.

  3. 3.

    In surface calculations, boundary conditions are applied to a unit cell consisting in a material slab characterized by its (hkl) Miller indices and a vacuum layer. The spatial reference for the potential is set by the position in the vacuum layer where the electrostatic potential is a local extremum. Surfaces are generally built in such a way that the two surfaces of the active slab do not interact and are symmetrically related. This way, the middle of the interslab distance corresponds to the reference potential position.

  4. 4.

    The interslab distance must account for the slab extension and is therefore calculated as the difference in the z-coordinate of the atoms lying on either sides of the layer minus their atomic radii.

References

  1. Plett GL (2004)Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2. Modeling and identification. J Power Sources 134(2):262–276

    Google Scholar 

  2. Doyle M, Newman J (1995) Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases. J Power Sources 54(1):46–51

    Google Scholar 

  3. Darling R, Newman J (1998) Modeling Side Reactions in Composite LiyMn2O4 Electrodes. J Electrochem Soc 145(3):990–998

    Google Scholar 

  4. Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) Development of first principles capacity fade model for Li-Ion cells. J Electrochem Soc 151(2):A196–A203

    Google Scholar 

  5. Safari M, Morcrette M, Teyssot A, Delacourt C (2009) Multimodal physics-based aging model for life prediction of Li-Ion batteries. J Electrochem Soc 156(3):A145–A153

    Google Scholar 

  6. Safari M, Delacourt C (2011) Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence. J Electrochem Soc 158(2):A63–A174

    Google Scholar 

  7. Young WM, Elcock EW (1966) Monte Carlo studies of vacancy migration in binary ordered alloys: IProc Phys Soc 89:735–746

    Google Scholar 

  8. Fowler R, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge, p 7

    Google Scholar 

  9. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics: foundations, applications, frontiers. Springer, Berlin. ISBN: 978-3-540-74252-4

    Google Scholar 

  10. Karma A, Rappel W-J (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57(4):4323–4349

    Google Scholar 

  11. Franco AA, Schott P, Jallut C, Maschke B (2007) A multi-scale dynamic mechanistic model for the transient analysis of PEFCs. Fuel Cells 7(2):99–117

    Google Scholar 

  12. Bazant M (2013) Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc Chem Res 46(5):1144–1160

    Google Scholar 

  13. Franco AA (2013) Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv 3:13027–13058

    Google Scholar 

  14. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J Electrochem Soc 144:1609–1613

    Google Scholar 

  15. Saubanère M, Ben Yahia M, Lebègue S, Doublet M-L (2014) An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries. Nat Commun 5:5559

    Google Scholar 

  16. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3):B864–871

    Google Scholar 

  17. Kohn W, Sham LJ (1965) Self-Consistent equations including exchange and correlation Effects. Phys Rev 140(4):A1133–A1138

    Google Scholar 

  18. von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. J Phys C: Solid State Phys 5(13):1629–1642

    Google Scholar 

  19. Wang Y, Perdew JP (1991) Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B 44(24):13298–13307

    Google Scholar 

  20. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249

    Google Scholar 

  21. Becke AD (1993) Density functional thermochemistry III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Google Scholar 

  22. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985

    Google Scholar 

  23. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110(13):6158–6170

    Google Scholar 

  24. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118(18):8207–8215

    Google Scholar 

  25. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954

    Google Scholar 

  26. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulator. Phys Rev B 52(8):R5467–R5470

    Google Scholar 

  27. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B 57(3):1505–1509

    Google Scholar 

  28. Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97(10):103001-1-4

    Google Scholar 

  29. Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365

    Google Scholar 

  30. Feynman RP (1939) Forces in Molecules. Phys Rev 56(4):340–343

    Google Scholar 

  31. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J Chem Phys 124(24):244704–1–15

    Google Scholar 

  32. Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S (2006) Data-Mining-Driven quantum mechanics for the prediction of structure. MRS Bull 31:981–985

    Google Scholar 

  33. See the Material Project website: https://www.materialsproject.org/

  34. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Google Scholar 

  35. Wales D, Doye J (1997) Global Optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 Atoms. J Phys Chem A 101(28):5111–5118

    Google Scholar 

  36. Grotendorst J (ed) (2000) Modern methods and algorithms of quantum chemistry. John von Neumann Institute for Computing, Jülich, NIC Series, Vol 1, pp 301–449. ISBN 3-00-005618-1

    Google Scholar 

  37. Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55(16):10355–10368

    Google Scholar 

  38. Ben Yahia M, Lemoigno F, Beuvier T, Filhol JS, Richard-Plouet M, Brohan L, Doublet ML (2009) Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. J Chem Phys 130(20):204501-1-11

    Google Scholar 

  39. Kikuchi R (1951) A Theory of Cooperative Phenomena. Phys Rev 81(6):988–1003

    Google Scholar 

  40. Sanchez JM, Ducastelle F, Gratias D (1984) Generalized cluster description of multicomponent systems Physica 128:334–350

    Google Scholar 

  41. Persson K, Hinuma Y, Meng YS, Van der Ven A, Ceder G (2010) Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations. Phys Rev B 82(12):125416-1-9

    Google Scholar 

  42. Van der Ven A, Aydinol MK, Ceder G, Kresse G, Hafner J (1998) First-principles investigation of phase stability in LixCoO2. Phys Rev B 58(6):2975–2987

    Google Scholar 

  43. Van der Ven A, Aydinol MK, Ceder G (1998) First Principles evidence for stage ordering in LixCoO2. J Electrochem Soc 145(6):2149–2155

    Google Scholar 

  44. Van der Ven A, Ceder G, Asta M, Tepesch PD (2001) First-principles theory of ionic diffusion with nondilute carriers. Phys Rev B 64(18):184307-1-17

    Google Scholar 

  45. Mueller T, Ceder G (2009) Bayesian approach to cluster expansions. Phys Rev B 80(2):024103-1-13

    Google Scholar 

  46. Bethe HA (1935) Statistical theory of superlattices. Proc Roy Soc London A 150:552–575

    Google Scholar 

  47. Filhol J-S, Combelles C, Yazami R, Doublet M-L (2008) Phase diagrams for systems with low free energy variation: A coupled theory/experiments method applied to Li-graphite. J Phys Chem C 112(10):3982–3988

    Google Scholar 

  48. Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond Intercalation-Based Li-Ion Batteries: The State of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192

    Google Scholar 

  49. Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B 73(19):195107-1-6

    Google Scholar 

  50. Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82(7):075122-1-11

    Google Scholar 

  51. Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys Rev B 70(23):235121–1–8

    Google Scholar 

  52. Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Phosphates as Lithium-Ion Battery Cathodes: An evaluation based on high-throughput ab Initio calculations. Chem Mater 23:3495–3508

    Google Scholar 

  53. Ben Yahia M, Lemoigno F, Rousse G, Boucher F, Tarascon JM, Doublet ML (2012) Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energy Environ Sci 5:9584–9594

    Google Scholar 

  54. Frayret C, Villesuzanne A, Spaldin N, Bousquet E, Chotard J-N, Recham N, Tarascon J-M (2010) LiMSO4F (M = Fe, Co and Ni): promising new positive electrode materials through the DFT microscope. Phys Chem Chem Phys 12:15512–15522

    Google Scholar 

  55. Jain A, Hautier G, Ping Ong S, Moore CJ, Fischer CC, Persson KA, Ceder G (2011) Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B 84(4):045115-1-10

    Google Scholar 

  56. Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G (2011) Data Mined ionic substitutions for the discovery of new compounds. Inorg Chem 50(2):656–663

    Google Scholar 

  57. Mueller T, Hautier G, Jain A, Ceder G (2011) Evaluation of tavorite-structured cathode materials for lithium-Ion batteries using high-throughput computing  Chem Mater 23(17):3854–3862

    Google Scholar 

  58. Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations Comp Mater Sci 50:2295–2310

    Google Scholar 

  59. Ping Ong P, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V, Ceder G (2013) Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comp Mater Sci 68:314–319

    Google Scholar 

  60. Van der Ven A, Ceder G (2005) Vacancies in ordered and disordered binary alloys treated with the cluster expansion. Phys Rev B 71(5):054102-1-7

    Google Scholar 

  61. Bergerhoff G, Hundt R, Sievers R, Brown ID (1983) The inorganic crystal structure data base. J Chem Inf Comput Sci 23:66–69

    Google Scholar 

  62. Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr A 58:364–369

    Google Scholar 

  63. Grazulis S et al (2009) Crystallography open database an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Google Scholar 

  64. Downs RT, Hall-Wallace M (2003) The american mineralogist crystal structure database. Am Mineral 88:247–250

    Google Scholar 

  65. Eyring H (1935) The Activated complex in chemical reactions. J Chem Phys 3:107–115

    Google Scholar 

  66. Laidler K, King C (1983) Development of transition-state theory. J Phys Chem 87(15):2657–2664

    Google Scholar 

  67. Henkelman G, Jóhannesson G, Jónsson H (2000) Methods for finding saddle points and minimum energy paths. In: Schwartz SD (ed) Progress on theoretical chemistry and physics. Kluwer Academic Publishers, pp 269–300

    Google Scholar 

  68. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Google Scholar 

  69. Yan X, Gouissem A, Sharma P (2015) Atomistic insights into Li-ion diffusion in amorphous silicon. Mech Mater. doi:10.1016/j.mechmat.2015.04.001

    Google Scholar 

  70. Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10(10):4123–4127

    Google Scholar 

  71. Arora P, White RE, Doyle M (1998) Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. J Electrochem Soc 145(10):3647–3667

    Google Scholar 

  72. Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281

    Google Scholar 

  73. Christensen J, Newman J (2005) Cyclable lithium and capacity loss in Li-Ion cells. J Electrochem Soc 152(4):A818–830

    Google Scholar 

  74. Schmickler W, Santos E (eds) (2010) Interfacial electrochemistry, 2nd edn. Springer, Berlin

    Google Scholar 

  75. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a Fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Google Scholar 

  76. Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM (2001) Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys 115(4):1661–1669

    Google Scholar 

  77. Filhol J-S, Neurock M (2006) Angew Chem Int Ed Elucidation of the Electrochemical Activation of Water over Pd by First Principles 45(3):402–406

    Google Scholar 

  78. Filhol J-S, Bocquet M-L (2007) Charge control of the water monolayer/Pd interface Chem. Phys Lett 438(4–6):203–207

    Google Scholar 

  79. Taylor CD, Wasileski SA, Filhol J-S, Neurock M (2006) First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys Rev B 73(16):165402–1–16

    Google Scholar 

  80. Mamatkoulov M, Filhol J-S (2011) An ab initio study of electrochemical vs. electromechanical properties: the case of CO adsorbed on a Pt (111) surface. Phys Chem Chem Phys 13(17):7675–7684

    Google Scholar 

  81. Filhol J-S, Doublet M-L (2013) An ab initio study of surface electrochemical disproportionation: the case of a water monolayer adsorbed on a Pd (111) surface Catal Today 202:87–97

    Google Scholar 

  82. Lespes N, Filhol J-S (2015) Using the electrochemical dimension to build water/Ru (0001) phase diagram. Surf Sci 631:8–16

    Google Scholar 

  83. Dalverny A-L, Filhol J-S, Doublet M-L (2011) Interface Electrochemistry in Conversion Reactions for Li-Ion Batteries. J Mat Chem 21:10134–10142

    Google Scholar 

  84. Lespes N, Filhol J-S (2015) Using Implicit Solvent in Ab Initio Electrochemical Modeling: Investigating Li+/Li Electrochemistry at a Li/Solvent Interface. J Comp Theo Chem. 11(7):3375–3382 doi:10.1021/acs.jctc.5b00170

    Google Scholar 

  85. Ando K, Hynes JT (1997) Molecular mechanism of Hcl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J Phys Chem B 101(49):10464–10478

    Google Scholar 

  86. Del Popolo MG, Lynden-Bell RM, Kohanoff J (2005) Ab initio molecular dynamics simulation of a room temperature ionic liquid. J Phys Chem B 109(12):5895–5902  

    Google Scholar 

  87. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093

    Google Scholar 

  88. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-Pcm solvation model. J Comput Chem 24(6):669–681

    Google Scholar 

  89. Jinnouchi R, Anderson AB (2008) Electronic structure calculations of liquid-solid interfaces: combination of density functional theory and modified Poisson-Boltzmann theory. Phys Rev B 77(24):245417-1-18

    Google Scholar 

  90. Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102-1-20

    Google Scholar 

  91. Steinmann S, Michel C, Schwiedernoch R, Filhol J-S, Sautet P (2015) Modeling the HCOOH/CO2 Electrocatalytic Reaction, When Details Are Key. Chem Phys Chem. 16(11):2307–2311. doi:10.1002/cphc.201500187

    Google Scholar 

  92. Filhol J-S, Doublet M-L (2014) Conceptual surface electrochemistry and new redox descriptors. J Phys Chem C 118(33):19023–19031

    Google Scholar 

  93. Khatib R, Dalverny A-L, saubanère M, Gaberscek M, Doublet ML (2013) Origin of the voltage hysteresis in the CoP conversion material for Li-Ion batteries. J Phys Chem C 117:837–849

    Google Scholar 

  94. Meggiolaro D, Gigli G, Paolone A, Reale P, Doublet M-L, Brutti S (2015) Origin of the voltage hysteresis of MgH 2 electrodes in Lithium. J Phys Chem C 119:17044–17052

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Liesse Doublet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Saubanère, M., Filhol, JS., Doublet, ML. (2016). Atomistic Modeling of Electrode Materials for Li-Ion Batteries: From Bulk to Interfaces. In: Franco, A., Doublet, M., Bessler, W. (eds) Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5677-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5677-2_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5676-5

  • Online ISBN: 978-1-4471-5677-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics