Skip to main content
Log in

Analytical and numerical treatment of electro-thermo-mechanical coupling

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Single-field problems are well understood concerning their numerical treatment and their numerical problems. In coupled situations, this is not always the case. This article is an attempt to fill the gap for the three-field problem of small strain electro-thermo-elasticity. Apart from the quasi-static equilibrium conditions, also, the nonlinear heat equation and the stationary but temperature-dependent electrical current equation are treated. The following aspects are investigated: First, analytical equations for code verification purposes are provided for particular subproblems. Secondly, we apply the method of vertical lines, which leads to a system of differential-algebraic equations—after the spatial discretization—that can be solved using stiffly accurate, diagonally implicit Runge–Kutta methods. This enables to apply high-order time integration schemes and to make use of step-size control by embedded schemes. Here, the known problems of the connection between mesh- and the temporal step-size must be studied, also focusing on the order reduction caused by nonlinear Dirichlet boundary conditions. Additionally, the resulting system of nonlinear equations is treated with different methods such as the Newton–Raphson scheme, the Newton–Chord method and a Newton–Chord method with Aitken relaxation leading to very efficient computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander R.: Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14, 1006–1021 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso-Mallo I.: Runge–Kutta methods without order reduction for linear initial boundary value problems. Numer. Math. 91(4), 577–603 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alonso-Mallo I., Cano B.: Avoiding order reduction of Runge–Kutta discretizations for linear time-dependent parabolic problems. BIT Numer. Math. 44(1), 1–20 (2004). doi:10.1023/B:BITN.0000025087.83146.33

    Article  MATH  MathSciNet  Google Scholar 

  4. Armero F., Simo J.C.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bathe K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  6. Birken P., Quint K.J., Hartmann S., Meister A.: A time-adaptive fluid–structure interaction method for thermal coupling. Comput. Vis. Sci. 13, 331–340 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boley B.A., Weiner J.H.: Theory of Thermal Stresses. Dover Publications, Mineola (1997)

    MATH  Google Scholar 

  8. Calvo M.P., Palencia C.: Avoiding the order reduction of Runge–Kutta methods for linear initial boundary value problems. Math. Comput. 71(240), 1529–1543 (2001)

    Article  MathSciNet  Google Scholar 

  9. Carpenter M.H., Gottlieb D., Abarbanel S., Don W.S.: The theoretical accuracy of Runge–Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J. Sci. Comput. 16(6), 1241–1252 (1995). doi:10.1137/0916072

    Article  MATH  MathSciNet  Google Scholar 

  10. Cash J.R.: Diagonally implicit Runge–Kutta formulae with error estimates. J. Inst. Math. Appl. 24, 293–301 (1979)

    Article  MATH  Google Scholar 

  11. Diebels S., Ellsiepen P., Ehlers W.: Error-controlled Runge–Kutta time integration of a viscoplastic hybrid two-phases model. Tech. Mech. 19, 19–27 (1999)

    Google Scholar 

  12. Eidel B., Kuhn C.: Order reduction in computational inelasticity: why it happens and how to overcome it—the ODE-case of viscoelasticity. Int. J. Numer. Methods Eng. 87(11), 1046–1073 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eidel, B., Stumpf, F., Schröder, J.: Finite strain viscoelasticity: how to consistently couple discretizations in time and space on quadrature-point level for full order \({p \geq 2}\) and a considerable speed-up. Comput. Mech. 52(3), 463–483 (2013)

  14. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Doctoral thesis, Institute of Mechanics II, University of Stuttgart, report No. II-3 (1999)

  15. Ellsiepen P., Hartmann S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Methods Eng. 51, 679–707 (2001)

    Article  MATH  Google Scholar 

  16. Erbts P., Düster A.: Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains. Comput. Math. Appl. 64(8), 2408–2430 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Erbts, P., Hartmann, S., Düster, A.: A partitioned solution approach for electro-thermo-mechanical problems. Arch. Appl. Mech. (2014)

  18. Glaser, S.: Berechnung gekoppelter thermomechanischer Prozesse. Tech. Rep. ISD Report No. 91/3, Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen, Universität Stuttgart, Stuttgart (Germany) (1991)

  19. Grossmann C., Roos H.G.: Numerik partieller Differentialgleichungen. Teubner, Stuttgart (1994)

    Book  MATH  Google Scholar 

  20. Gupta O.P., De A.: An improved numerical modeling for resistance spot welding process and its experimental verification. J. Manuf. Sci. Eng. 120(2), 246–251 (1998)

    Article  Google Scholar 

  21. E. HairerG. Wanner: Solving Ordinary Differential Equations II. 2nd edn. Springer, Berlin (1996)

  22. Hairer E., Lubich C., Roche M.: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods. Springer, Berlin (1989)

    MATH  Google Scholar 

  23. Hairer E., Norsett S.P., Wanner G.: Solving Ordinary Differential Equations I. 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  24. Hartmann S.: A remark on the application of the Newton–Raphson method in non-linear finite element analysis. Comput. Mech. 36(2), 100–116 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hartmann S., Hamkar A.W.: Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity. Comput. Methods Appl. Mech. Eng. 199(23-24), 1455–1470 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hartmann, S., Rothe, S.: A rigorous application of the method of vertical lines to coupled systems in finite element analysis. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 161–175. Springer, Berlin (2013)

  27. Hartmann S., Duintjer Tebbens J., Quint K.J., Meister A.: Iterative solvers within sequences of large linear systems in non-linear structural mechanics. J. Appl. Math. Mech. (ZAMM) 89(9), 711–728 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hartmann, S., Rothe, S., Frage, N.: Aspekte der Simulation von Kompaktierungsvorgängen an Pulvermaterialien. In: Kolaska, H. Pulvermetallurgie-zukunftsweisend vom Rohstoff bis zur Anwendung, pp. 127–142. Heimdall Verlag, Dortmund (2012)

  29. Hartmann, S., Rothe, S., Frage, N.: Electro-thermo-elastic simulation of graphite tools used in SPS processes. In: Altenbach, H., Forest, S., Krivtsov, A. Generalized Continua as Models of Materials Advanced Structured Materials, pp. 143–161. Springer, Berlin (2013)

  30. Hughes T.J.R: The Finite Element Method. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  31. Irons, B., Tuck, R.C.: A version of the Aitken accelerator for computer implementation. Int. J. Numer.Methods Eng. 1, 275–594 277 (1969)

  32. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1995)

  33. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2003)

  34. Kessel, H.U., Hennicke, J., Kirchner, R., Kessel, T.: Kurzzeitsintern neuer Materialien mittels FAST/SPS - Vom Labor zum kosteneffizienten Produktionsverfahren. Tech. rep., FCT Systeme GmbH (2010). http://www.fct-systeme.de/download/20100421020349/2010-04-FAST-SPS-Industrial_D

  35. Küttler U., Wall W.: Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech. 1(43), 61–72 (2008)

    Article  Google Scholar 

  36. Lin L., Chiao M.: Electrothermal responses of lineshape microstructures. Sens. Actuators A Phys. 55(1), 35–41 (1996)

    Article  Google Scholar 

  37. Mankame N.D., Ananthasuresh G.K.: Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J. Micromech. Microeng. 11(5), 452 (2001)

    Article  Google Scholar 

  38. Meyberg K., Vachenauer P.: Höhere Mathematik 2. Springer, Berlin (2001)

    MATH  Google Scholar 

  39. Nodeh I., Serajzadeh S., Kokabi A.: Simulation of welding residual stresses in resistance spot welding, FE modeling and X-ray verification. J. Mater. Process. Technol. 205(1–3), 60–69 (2008)

    Article  Google Scholar 

  40. Olevsky E.A, Garcia-Cardona C., Bradbury W.L., Haines C.D., Martin D.G., Kapoor D.: Fundamental aspects of spark plasma sintering: II. Finite element analysis of scalability. J. Am. Ceram. Soc. 95(8), 2414–2422 (2012)

    Article  Google Scholar 

  41. Palma R., Pérez-Aparicio J.L., Taylor R.L.: Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput. Methods Appl. Mech. Eng. 213–216, 93–103 (2012)

    Article  Google Scholar 

  42. Pathria D.: The correct formulation of intermediate boundary conditions for Runge–Kutta time integration of initial boundary value problems. SIAM J. Sci. Comput. 18(5), 1255–1266 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Perez-Aparicio J., Palma R., Taylor R.: Finite element analysis and material sensitivity of Peltier thermoelectric cells coolers. Int. J. Heat Mass Transf. 55(4), 1363–1374 (2012)

    Article  MATH  Google Scholar 

  44. Perez-Aparicio J.L., Taylor R.L., Gavela D.: Finite element analysis of nonlinear fully coupled thermoelectric materials. Comput. Mech. 40(1), 35–45 (2007)

    Article  MATH  Google Scholar 

  45. Quint, K.J.: Thermomechanically Coupled Processes for Functionally Graded Materials: Experiments, Modelling, and Finite Element Analysis Using High-Order DIRK-Methods. PhD-Thesis, Report No. 2/2012, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld (2012)

  46. Rank E., Katz C., Werner H.: On the importance of the discrete maximum principle in transient analysis using finite element methods. Int. J. Numer. Methods Eng. 19, 1771–1782 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  47. Schenk O., Gärtner K.: On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158–179 (2006)

    MATH  MathSciNet  Google Scholar 

  48. Seifert W., Ueltzen M., Müller E.: One-dimensional modelling of thermoelectric cooling. Phys. Stat. Sol. 194(1), 277–290 (2002)

    Article  Google Scholar 

  49. Simo J.C., Miehe C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)

    Article  MATH  Google Scholar 

  50. Song Y., Li Y., Zhou Z., Lai Y., Ye Y.: A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material. J. Mater. Sci. 46(17), 5645–5656 (2011)

    Article  Google Scholar 

  51. Sun X., Dong P.: Analysis of aluminum resistance spot welding processes using coupled finite element procedures. Weld. Res. Suppl. 79(8), 215–221 (2000)

    Google Scholar 

  52. Wriggers P.: Nichtlineare Finite-Elemente Methoden. Springer, Berlin (2001)

    Book  Google Scholar 

  53. Yosibash, Z., Weiss, D., Hartmann, S.: High-order FEMs for thermo-hyperelasticity at finite strains. Comput. Math. Appl. 67(3), 477–496 (2014)

  54. Zavaliangos A., Zhang J., Krammer M., Groza J.R.: Temperature evolution during field activated sintering. Mater. Sci. Eng. A 379, 218–228 (2004)

    Article  Google Scholar 

  55. Zhu Y., Espinosa H.D.: Effect of temperature on capacitive RF MEMS switch performance—a coupled-field analysis. J. Micromech. Microeng. 14(8), 1270 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hartmann.

Additional information

We would like to thank the German-Research-Foundation (DFG) for financial support of this research project (HA-2024/7-2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothe, S., Schmidt, J.H. & Hartmann, S. Analytical and numerical treatment of electro-thermo-mechanical coupling. Arch Appl Mech 85, 1245–1264 (2015). https://doi.org/10.1007/s00419-014-0948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0948-5

Keywords

Navigation