Skip to main content
Log in

Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The great influence of uncertainties on the behavior of physical systems has always drawn attention to the importance of a stochastic approach to engineering problems. Accordingly, in this paper, we address the problem of solving a Finite Element analysis in the presence of uncertain parameters. We consider an approach in which several solutions of the problem are obtained in correspondence of parameters samples, and propose a novel non-intrusive method, which exploits the functional principal component analysis, to get acceptable computational efforts. Indeed, the proposed approach allows constructing an optimal basis of the solutions space and projecting the full Finite Element problem into a smaller space spanned by this basis. Even if solving the problem in this reduced space is computationally convenient, very good approximations are obtained by upper bounding the error between the full Finite Element solution and the reduced one. Finally, we assess the applicability of the proposed approach through different test cases, obtaining satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allaix DL, Carbone VI (2013) Karhunen–loève decomposition of random fields based on a hierarchical matrix approach. Int J Numer Methods Eng 94(11):1015–1036

    Article  MathSciNet  Google Scholar 

  2. Amar JG (2006) The monte carlo method in science and engineering. Comput Sci Eng 8(2):9–19

    Article  Google Scholar 

  3. Audouze C, De Vuyst F, Nair P (2009) Reduced-order modeling of parameterized pdes using time-space-parameter principal component analysis. Int J Numer Methods Eng 80(8):1025–1057

    Article  MATH  Google Scholar 

  4. Banerjee S, Gelfand AE, Carlin BP (2004) Hierarchical modeling and analysis for spatial data. CRC Press, Boca Raton

    MATH  Google Scholar 

  5. Boyaval S (2012) A fast monte-carlo method with a reduced basis of control variates applied to uncertainty propagation and bayesian estimation. Comput Methods Appl Mech Eng 241:190–205

    Article  MathSciNet  Google Scholar 

  6. Boyaval S, Le Bris C, Lelièvre T, Maday Y, Nguyen NC, Patera AT (2010) Reduced basis techniques for stochastic problems. Arch Comput Methods Eng 17(4):435–454

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlberg K, Farhat C (2009) An adaptive pod-krylov reduced-order model for structural optimization. In: The eighth world congress on structural and multidisciplinary optimization, Lisbon, Portugal, 15 June 2009

  8. Chinesta F, Keunings R, Leygue A (2013) The proper generalized decomposition for advanced numerical simulations: a primer. Springer Science & Business Media, New York

    Google Scholar 

  9. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404

    Article  Google Scholar 

  10. Dulong JL, Druesne F, Villon P (2007) A model reduction approach for real-time part deformation with nonlinear mechanical behavior. Int J Interact Des Manuf (IJIDeM) 1(4):229–238

    Article  Google Scholar 

  11. Florentin E, Díez P (2012) Adaptive reduced basis strategy based on goal oriented error assessment for stochastic problems. Comput Methods Appl Mech Eng 225:116–127

    Article  Google Scholar 

  12. Ghanem R, Red-Horse J (1999) Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Phys D 133(1):137–144

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach, vol 387974563. Springer, Heidelberg

    Book  MATH  Google Scholar 

  14. Green DK, Douglas K, Mostyn G (2015) The simulation and discretisation of random fields for probabilistic finite element analysis of soils using meshes of arbitrary triangular elements. Comput Geotech 68:91–108

    Article  Google Scholar 

  15. Horváth L, Kokoszka P (2012) Inference for functional data with applications, vol 200. Springer, New York

    MATH  Google Scholar 

  16. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, New York

    Google Scholar 

  17. Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis, vol 4. Prentice hall, Englewood Cliffs

    MATH  Google Scholar 

  18. Kerschen G, Golinval JC, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn 41(1–3):147–169

    Article  MathSciNet  MATH  Google Scholar 

  19. Liorni I, Parazzini M, Fiocchi S, Guadagnin V, Ravazzani P (2014) Polynomial chaos decomposition applied to stochastic dosimetry: study of the influence of the magnetic field orientation on the pregnant woman exposure at 50 hz. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, IEEE, pp 342–344

  20. Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196(45):4521–4537

    Article  MathSciNet  MATH  Google Scholar 

  21. Nouy A (2010) Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch Comput Methods Eng 17(4):403–434

    Article  MathSciNet  MATH  Google Scholar 

  22. Panayirci H, Schuëller GI (2011) On the capabilities of the polynomial chaos expansion method within sfe analysis an overview. Arch Comput Methods Eng 18(1):43–55

    Article  MATH  Google Scholar 

  23. Ramsay J, Silverman BW (2005) Functional data analysis. Wiley Online Library, New York

    Book  Google Scholar 

  24. Ramsay JO, Silverman BW (2002) Applied functional data analysis: methods and case studies, vol 77. Springer, New York

    Book  Google Scholar 

  25. Ritto T, Buezas F, Sampaio R (2012) Proper orthogonal decomposition for model reduction of a vibroimpact system. J Braz Soc Mech Sci Eng 34(3):330–340

    Article  Google Scholar 

  26. Schuëller G (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773

    Article  MATH  Google Scholar 

  27. Sirovich L (1987) Turbulence and the dynamics of coherent structures. 2. symmetries and transformations. Q Appl Math 45(3):573–582

    MathSciNet  Google Scholar 

  28. Sochala P, Le Maître O (2013) Polynomial chaos expansion for subsurface flows with uncertain soil parameters. Adv Water Resour 62:139–154

    Article  Google Scholar 

  29. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9):1031–1051

    Article  MATH  Google Scholar 

  30. Tröltzsch F, Volkwein S (2009) Pod a-posteriori error estimates for linear-quadratic optimal control problems. Comput Optim Appl 44(1):83–115

    Article  MathSciNet  MATH  Google Scholar 

  31. Umesh K, Ganguli R (2013) Material uncertainty effect on vibration control of smart composite plate using polynomial chaos expansion. Mech Adv Mater Struct 20(7):580–591

    Article  Google Scholar 

  32. Vanmarcke E, Shinozuka M, Nakagiri S, Schueller G, Grigoriu M (1986) Random fields and stochastic finite elements. Struct Saf 3(3):143–166

    Article  Google Scholar 

  33. Volkwein S (2011) Model reduction using proper orthogonal decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz. see http://www.uni-graz.at/imawww/volkwein/POD.pdf

  34. Yu H, Gillot F, Ichchou M (2012) A polynomial chaos expansion based reliability method for linear random structures. Adv Struct Eng 15(12):2097–2112

    Article  Google Scholar 

  35. Zhu J, Taylor Z, Zienkiewicz O (2005) The finite element method: its basis and fundamentals. Butterworth Heinemann, Elsevier

    Google Scholar 

Download references

Acknowledgments

This work has been supported by Italian CNR and MIUR organizations through the Project Factory of the Future— Fab@Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Lanzarone.

Appendices

Appendix 1

This Appendix describes the general procedure to derive matrix \(\mathbb {W}\). As suggested in Sect. 3, the bivariate function that represents the horizontal and vertical displacement can be written as

$$\begin{aligned} \varvec{v}_i(\varvec{x})=\sum _{f=1}^{2N_{f}}c_{if}\phi _f(\varvec{x}), \quad i=1, \dots , N , \end{aligned}$$

where \(N_{f}\) is the number of nodes in the grid, equal to \((n+1)^2\), and

$$\begin{aligned} \varvec{c}_i = (c_{i1}^u, c_{i1}^v, c_{i2}^u,c_{i2}^v,\dots ,c_{iN_{f}}^u,c_{iN_{f}}^v). \end{aligned}$$

where \(c_{ij}^u\) and \(c_{ij}^v\) are the horizontal and vertical nodal displacements, respectively. Similarly,

$$\begin{aligned} \varvec{\phi } = (\tilde{\phi }_1, \tilde{\phi }_1, \tilde{\phi }_2,\tilde{\phi }_2, \dots ,\tilde{\phi }_{N_{f}},\tilde{\phi }_{N_{f}}) \end{aligned}$$

where \(\tilde{\phi }_f\) is the finite element basis function centered in node f, \(f=1,\dots ,N_{f}\). Hence,

$$\begin{aligned} \mathbb {W}= & {} \int \varvec{\phi } \ \varvec{\phi }'\\= & {} \begin{pmatrix} \int \phi _1\phi _1 &{} \int \phi _1\phi _2 &{} \dots &{} \int \phi _1\phi _{2N_{f}} \\ \int \phi _2\phi _1 &{} \int \phi _2\phi _2 &{} \dots &{} \int \phi _2\phi _{2N_{f}} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \int \phi _{2N_{f}}\phi _1 &{} \int \phi _ {2N_{f}}\phi _2 &{} \dots &{} \int \phi _{2N_{f}}\phi _{2N_{f}} \\ \end{pmatrix}\\= & {} \begin{pmatrix} \int \tilde{\phi }_1\tilde{\phi }_1 &{} \int \tilde{\phi }_1\tilde{\phi }_1 &{} \dots &{} \int \tilde{\phi }_1\tilde{\phi }_{2N_{f}} &{}\int \tilde{\phi }_1\tilde{\phi }_{2N_{f}} \\ \int \tilde{\phi }_1\tilde{\phi }_1 &{} \int \tilde{\phi }_1\tilde{\phi }_1 &{} \dots &{} \int \tilde{\phi }_1\tilde{\phi }_{2N_{f}} &{}\int \tilde{\phi }_1\tilde{\phi }_{2N_{f}} \\ \int \tilde{\phi }_2\tilde{\phi }_1 &{} \int \tilde{\phi }_2\tilde{\phi }_1 &{} \dots &{} \int \tilde{\phi }_2\tilde{\phi }_{2N_{f}} &{} \int \tilde{\phi }_2\tilde{\phi }_{2N_{f}} \\ \int \tilde{\phi }_2\tilde{\phi }_1 &{} \int \tilde{\phi }_2\tilde{\phi }_1 &{} \dots &{} \int \tilde{\phi }_2\tilde{\phi }_{2N_{f}} &{} \int \tilde{\phi }_2\tilde{\phi }_{2N_{f}} \\ \vdots &{}\vdots &{} \ddots &{} \vdots &{} \vdots \\ \int \tilde{\phi }_{2N_{f}}\tilde{\phi }_1 &{} \int \tilde{\phi }_{2N_{f}}\tilde{\phi }_1 &{} \dots &{} \int \tilde{\phi }_{2N_{f}}\tilde{\phi }_{2N_{f}} &{} \int \tilde{\phi }_{2N_{f}}\tilde{\phi }_{2N_{f}} \\ \end{pmatrix} \end{aligned}$$

The procedure outlined till now is general and does not depend on the specific case, i.e., the shape of the domain and the mesh. In Appendix 2, we apply the procedure to the specific test case considered in this paper.

Appendix 2

In this Appendix, we compute the matrix \(\mathbb {W}\) specific for our test case, with rectangular domain and structured triangular mesh.

Thanks to an appropriate change of variables, we obtain that the number of elements of the FE basis with a peak in node i, \(i=1, \dots , F\), is \(\int \tilde{\phi }_i\tilde{\phi }_i = \frac{h_1 h_2}{12}\) and that the number of FE basis with a peak in node i and the other in node k is \(\int \tilde{\phi }_i\tilde{\phi }_k = \frac{h_1 h_2}{24}.\) Then, due to the structured mesh, \(\mathbb {W}\) is as follows.

Diagonal entries:

  • \(w_{kk}=\frac{h_1h_2}{6}\) if \(k=1, n^2\);

  • \(w_{kk}=\frac{h_1h_2}{12}\) if \(k=n, n(n-1)+1\);

  • \(w_{kk}=\frac{h_1h_2}{4}\) if k belongs to a border that it is not an angle;

  • \(w_{kk}=\frac{h_1h_2}{2}\) otherwise.

Non-diagonal entries:

  • If i corresponds to an internal node

    \(w_{ij} = \frac{h_1h_2}{12}\,j = i+1, i-1, i+n, i-n, i+n+1, i-n-1\);

    \(w_{ij} = 0\) otherwise.

  • If i corresponds to a node belonging to the bottom edge

    \(w_{ij} = \frac{h_1h_2}{12}\,j = i+n, i+n+1\);

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i+1, i-1\);

    \(w_{ij} = 0\) otherwise.

  • If i corresponds to a node belonging to the top edge

    \(w_{ij} = \frac{h_1h_2}{12}\,j = i-n, i-n-1\);

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i+1, i-1\);

    \(w_{ij} = 0\) otherwise.

  • If i corresponds to a node belonging to the right edge

    \(w_{ij} = \frac{h_1h_2}{12}\,j = i-1, i-n-1\);

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i+n, i-n\);

    \(w_{ij} = 0\) otherwise.

  • If i corresponds to a node belonging to the left edge

    \(w_{ij} = \frac{h_1h_2}{12}\,j = i+1, i+n+1\);

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i+n, i-n\);

    \(w_{ij} = 0\) otherwise.

  • If \(i=1\)

    \(w_{ij} = \frac{h_1h_2}{12}\,j = i+n+1\);

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i+1, i+n\);

    \(w_{ij} = 0\) otherwise.

  • If \(i=n\)

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i-1, i+n\);

    \(w_{ij} = 0\) otherwise.

  • If \(i=n(n-1)+1\)

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i+1, i-n\);

    \(w_{ij} = 0\) otherwise.

  • If \(i=n^2\)

    \(w_{ij} = \frac{h_1h_2}{12}\,j = i-n-1\);

    \(w_{ij} = \frac{h_1h_2}{24}\,j = i-1, i-n\);

    \(w_{ij} = 0\) otherwise.

The resulting sparsity pattern of this matrix \(\mathbb {W}\) is shown in Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchini, I., Argiento, R., Auricchio, F. et al. Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components. Comput Mech 56, 533–549 (2015). https://doi.org/10.1007/s00466-015-1185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1185-7

Keywords

Navigation