Skip to main content
Log in

Developments in stochastic structural mechanics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Uncertainties are a central element in structural analysis and design. But even today they are frequently dealt with in an intuitive or qualitative way only. However, as already suggested 80 years ago, these uncertainties may be quantified by statistical and stochastic procedures. This contribution attempts to shed light on some of the recent advances in the now established field of stochastic structural mechanics and also solicit ideas on possible future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EUROCODE 1: Basis of Design and Actions on Structures. CEN/TC250/N105, 6th draft, env edition, March (1991)

  2. AISC: Load and Resistance Factor Design Specification for Structural Steel Buildings (LRFD). AISC, Chicago, IL, USA (1993)

  3. API: Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms. API, Washington, D.C., API recommended practice 2a (rp 2a, 19edn) edition, Aug. 1991. 159p (1991)

  4. Atalik T.S., Utku S. (1976) Stochastic linearization of multi-degree-of-freedom nonlinear systems. Earthquake Eng. Struct. Dyn. 4, 411–420

    Google Scholar 

  5. Au S.K,, Beck J.L, (2003) Subset simulation and its application to seismic risk based on dynamic analysis. J. Eng. Mech. ASCE 129, 901–917

    Article  Google Scholar 

  6. Au S.-K., Beck J.L. (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16(4): 263–277

    Article  Google Scholar 

  7. Bea R.G.: Reliability based requalification criteria for offshore platforms. In: Proceedings International Conference on Offshore Mech. Arct. Eng. vol. II, Safety and Reliability, pp. 351–361, New York, ASME (1993)

  8. Bergman L.A., Spencer Jr.B.F. (1992) Robust numerical solution of the transient Fokker–Planck equation for nonlinear dynamical systems. In: Bellomo N., Casciati F. (eds) Proceedings IUTAM Symposiam. on Nonlinear Stochastic Mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Bergman L.A., Wojtkiewicz S.F., Johnson E.A., Spencer Jr.B.F. Some reflections on the efficiency of moment closure methods. In: Spanos P.D. (ed.) Computational Stochastic Dynamics, pp. 87–96 (1995)

  10. Bitzarakis S., Papadrakakis M., Kotsopulos A. (1997) Parallel solution techniques in computational structural mechanics. Comput. Meth. Appl. Mech. Eng. 148(1–2): 75–104

    Article  MathSciNet  MATH  Google Scholar 

  11. Bjerager P. (1988) Probability integration by directional simulation. J. Eng. Mech. 114(8): 1285–1302

    Google Scholar 

  12. BMFT.: Deutsche risikostudie kernkraftwerke. Technical report, Verlag TÜV Rheinland, Germany (1980)

  13. Cai G.Q., Lin Y.K. (1988) A new approximate solution technique for randomly excited non-linear systems. Int. J. Nonlin. Mech. 23(2/3): 409–420

    Article  MathSciNet  MATH  Google Scholar 

  14. Cai G.Q., Lin Y.K. (1994) On statistics of first passage failure. J. Appl. Mech. ASME 61, 93–99

    Article  MathSciNet  MATH  Google Scholar 

  15. Cai G.Q., Lin Y.K. (1996) Generation of non-Gaussian stationary processes. Phy. Rev. E 54(1): 299–303

    Article  Google Scholar 

  16. Cameron R., Martin W. (1947) The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals. Ann. Math 48, 385–392

    Article  MathSciNet  Google Scholar 

  17. Caughey T.K. (1959) Response of a linear string to random loading. J. Appl. Mech. ASME 26, 341–344

    MathSciNet  MATH  Google Scholar 

  18. Caughey T.K. (1986) On the response of non-linear oscillators to stochastic excitacion. Prob. Eng. Mech. 1(1): 2–4

    Article  MathSciNet  Google Scholar 

  19. Chang T.-P., Mochio T., Samaras E. (1986) Seismic response analysis of nonlinear structures. Prob. Eng. Mech. 1(3): 157–166

    Article  Google Scholar 

  20. COSSAN.: COmputational Stochastic Structural ANalysis, Part A, User’s Manual. Institute of Engineering Mechanics, Leopold–Franzens University, Innsbruck, Austria (1996)

  21. Crandall S.H. (1963) Perturbation techniques for random vibration of nonlinear systems. J. Acoust. Soc. Am. 35, 1700–1705

    Article  MathSciNet  Google Scholar 

  22. Crandall S.H. (1985) Non-Gaussian closure techniques for stationary random vibration. Int. J. Non-Lin. Mech. 20, 1–8

    Article  MathSciNet  MATH  Google Scholar 

  23. Crandall S.H., Chandiramani K.L., Cook R.G. (1966) Some first passage problems in random vibration. J. Appl. Mech. ASME 33, 624–639

    Google Scholar 

  24. Daubechies I. (1992) Ten Lectures on Wavelets. Wiley, New York

    MATH  Google Scholar 

  25. Deodatis G. (1991) Weighted integral method. I: Stochastic stiffness matrix. J. Eng. Mech. ASCE 117(8): 1851–1864

    Google Scholar 

  26. Deodatis G., Shinozuka M. (1991) Weighted integral method. II: Response variability and reliability. J. Eng. Mech. ASCE 117(8): 1865–1877

    Google Scholar 

  27. Der Kiureghian A., Li C.-C.: Statistics of fractional occupation time for nonlinear stochastic response. In: Lin Y.K., Su T.C. (eds.) Proceeding ASCE Engineering Mechanics Conference, pp. 116–119. Fort Lauderdale, USA, May 19–22 (1996)

  28. DNV.: Structural Reliability Analysis of Marine Structures. Det Nortske Veritas Classification AS, Norway, classif. notes no. 30.6 edn (1992)

  29. Ellingwood B. (1994) Probability-based codified design: past accomplishments and future challenges. Struct. Saf. 13, 159–176

    Article  Google Scholar 

  30. Freudenthal A.M. Safety and the probability of structural failure. Trans. ASCE 121(Proc. Paper 2843), 1337–1397 (1956)

    Google Scholar 

  31. Gasser M., Schuëller G.I. (1997) Reliability-based optimization of structural systems. Math. Meth. Oper. Res. 46, 287–307

    Article  MATH  Google Scholar 

  32. Ghanem R., Kruger R. (1996) Numerical solution of spectral stochastic finite element systems. Comput. Meth. Appl. Mech. Eng. 129, 289–303

    Article  MATH  Google Scholar 

  33. Ghanem R., Spanos P. (1991) Stochastic Finite Elements: A Spectral Approach. Springer, Berlin Heidelberg NewYork

    MATH  Google Scholar 

  34. Grigoriu M., Waisman F. (1997) Linear systems with polynomials of filtered Poisson processes. Probab. Eng. Mech. 12(2): 97–103

    Article  Google Scholar 

  35. Hisada T., Noguchi H.: Development of a nonlinear stochastic FEM and its application. In: Ang A.H.-S., Shinozuka M., Schuëller G.I. (eds.) Structural Safety and Reliability, Proceedings of the 5th ICOSSAR, pp. 1097–1104, San Francisco, 1989. ASCE

  36. Hoshiya M. (1995) Kriging and conditional simulation of Gaussian field. J. Eng. Mech. ASCE 121(2): 181–186

    Article  Google Scholar 

  37. Hoshiya M., Kuwana T.: Complementary discussions on theory of conditional stochastic field. J. Struct. Mech. Earthq. Eng. Jpn. Soc. Civil Eng. No. 477/I-25:93–96 (in Japanese), (1993)

  38. Hsu C.S. (1986) A cell mapping method for non-linear deterministic and stochastic systems—part I. the method of analysis. J. App. Mech. 53, 695–701

    MATH  Google Scholar 

  39. Hsu C.S. (1986) A cell mapping method for non-linear deterministic and stochastic systems—part II. examples of application. J. App. Mech. 53, 702–710

    Article  MATH  Google Scholar 

  40. Iwan W.D., Yang I.M. (1972) Application of statistical linearization technique to nonlinear multi-degree-of-freedom systems. J. Appl. Mech. ASME 39, 545–550

    MATH  Google Scholar 

  41. Liu J.S. (2001) Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  42. Kafka P. (1996) Probabilistic safety assessment: quantitative process to balance design, manufacturing and operation for safety of plant structures and systems. Nucl. Eng. Des. 165, 333–350

    Article  Google Scholar 

  43. Kameda H., Morikawa H. (1992) An interpolating stochastic process for simulation of conditional random fields. Probab Eng. Mech. 7(4): 242–254

    Article  Google Scholar 

  44. Kameda H., Morikawa H. (1993) Conditioned stochastic processes for conditional random fields. J. Eng. Mech. 120(4): 855–875

    Article  Google Scholar 

  45. Kanda J., Ellingwood B. (1991) Formulation of load factors based on optimum reliability. Struct. Saf. 9(3): 197–210

    Article  Google Scholar 

  46. Kijawatworawet W., Pradlwarter H.J., Schuëller G.I.: Structural reliability estimation by adaptive importance directional sampling. In: Shiraishi N., Shinozuka M., Wen Y.K. (eds.) Proceedings of the 7th International Conference on Structural Safety and Reliability (ICOSSAR’97), pp. 891 – 897, Kyoto, Japan, November 1998. A.A. Balkema, Rotterdam, The Netherlands (1998)

  47. Kloeden P.E., Platen E. (1992) Numerical Solution of Stochastic Differential Equations. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  48. Kontorovich V.Y., Lyandres V.Z. (1995) Stochastic differential equations: an approach to the generation of continuous non-Gaussian processes. IEEE Trans. Signal Process. 43(10): 2372–2385

    Article  Google Scholar 

  49. Koutsourelakis P.S., Pradlwarter H.J., Schuëller G.I. (2004) Reliability of structures in high dimensions, part I: algorithms and applications. Probab. Eng. Mech. 19(4): 409–417

    Article  Google Scholar 

  50. Lin Y.K. (1976) Probabilistic Theory of Structural Dynamics. Robert E. Krieger, Huntington

    MATH  Google Scholar 

  51. Lin Y.K., Cai G.Q. (1995) Probabilistic Structural Dynamics, Advanced Theory and Applications. McGraw–Hill, Inc., New York

    Google Scholar 

  52. Lind N.C. (1976) Approximate analysis and economics of structures. J. Struct. Div. 102(ST6): 1177–1196

    Google Scholar 

  53. Liu W.K., Belytschko T., Mani A. (1986) Probabilistic finite elements for nonlinear structural dynamics. Comput. Meth. Appl. Mech. Eng. 56, 61–81

    Article  MATH  Google Scholar 

  54. Loève M. (1977) Probability Theory, 4th edn. Springer Berlin Heidelberg, New York

    MATH  Google Scholar 

  55. Marti K. (ed): Stochastic Optimization Techniques – Numerical Methods and Technical Applications, vol. 513 of Lecture Notes in Economics and Mathematic Systems. Springer, Berlin Heidelberg New York (2002)

  56. Mayer M. (1926) Die Sicherheit der Bauwerke und ihre Berechnung nach Grenzkräften anstatt nach zulässigen Spannungen. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  57. Metropolis N., Ulam S. (1949) The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341

    Article  MathSciNet  MATH  Google Scholar 

  58. Moan T.: Reliability and risk analysis for design and operations planning of offshore structures. In: Schuëller G.I. Shinozuka M., Yao J.T.P. (eds.) Structural Safety and Reliability, vol. 1, pp. 21–43. Balkema, Rotterdam (1994)

  59. Muscolino G. (1995) Linear systems excited by polynomial forms of non-Gaussian filtered Poisson processess. Probab. Eng. Mech. 10(2): 35–44

    Article  Google Scholar 

  60. Newland D.E. (1994) An introduction to Random Vibration, Spectral and Wavelet Analysis. Wiley, New York

    Google Scholar 

  61. Nie J., Ellingwood R. (2000) Directional methods for structural reliability. Struct. Safety 22, 233

    Article  Google Scholar 

  62. Nowak A.S. (1995) Calibration of LRFD bridge code. J. Struct. Eng. 121(8): 1245–1251

    Article  Google Scholar 

  63. Pellissetti M.F., Fransen S.H.J.A., Pradlwarter H.J., Calvi A., Kreis A., Schuëller G.I., Klein M.: Stochastic launcher–satellite coupled dynamic analysis. J. Spacecr. Rocket. (2006) (to appear)

  64. Pellissetti M.F., Schuëller G.I. (2006) On general purpose software in structural reliability. Struct. Saf. 28(1–2): 3–16

    Article  Google Scholar 

  65. Pradlwarter H.J., Li W. (1991) On the computation of the stochastic response of highly nonlinear large MDOF-systems modeled by finite elements. Probab. Eng. Mech. 6(2): 109–116

    Article  Google Scholar 

  66. Pradlwarter H.J., Schuëller G.I. (1993) Equivalent linearization—a suitable tool to analyse MDOF-systems. Probab. Eng. Mech. 8, 115–126

    Article  Google Scholar 

  67. Pradlwarter H.J., Schuëller G.I. (1997) On advanced MCS procedures in stochastic structural dynamics. J. Nonlin. Mech. 32(4): 735–744

    Article  MATH  Google Scholar 

  68. Pradlwarter H.J., Schuëller G.I. (1999) Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation. Probab. Eng. Mech. 14, 213–227

    Article  Google Scholar 

  69. Pradlwarter H.J., Schuëller G.I., Székely G.S. (2002) Random eigenvalue problems for large systems. Comput. Struct. 80, 2415–2424

    Article  Google Scholar 

  70. Pugsley A.G.: A philosophy of aeroplane strength factors. Rep. Mem. Br. Aeron. Res. Comm. no. 1906, 1942

  71. Rice S.O.: Mathematical analysis of random noise. In: Wax N., (ed.) Selected Papers on Noise and Stochastic Processes, pp. 133–294. Dover, 1954. originally appeared in two parts in the Bell System Technical Journal in Vol. 23, July 1944 and in Vol. 24, January 1945

  72. Roberts J.B. (1976) First passage probability for nonlinear oscillators. J. Eng. Mech. ASCE 102, 851–866

    Google Scholar 

  73. Roberts J.B. (1977) Stationary response of oscillators with nonlinear damping to random excitation. J. Sound Vib. 30, 145–156

    Article  Google Scholar 

  74. Roberts J.B. (1986) First passage time for randomly excited non-linear oscillators. J. Sound Vib. 109(1): 33–50

    Article  Google Scholar 

  75. Rocha M.M., Schuëller G.I. (2005) Markoff chain modeling of NDI techniques. Fatigue Fract. Eng. Mater. Struct. 28, 267–278

    Article  Google Scholar 

  76. Schenk C.A., Schuëller G.I. (2003) Buckling analysis of cylindrical shells with random geometric imperfections. J. Non-Lin. Mech. 38(7): 1119–1132

    Article  MATH  Google Scholar 

  77. Schittkowski K.: Theory, implementation, and test of a nonlinear programming algorithm. In: Proceedings of Euromech-Colloquium 164 on “Optimization Methods in Structural Design”. Universität Siegen, 1982, Bibliographisches Institut, Mannheim (1983)

  78. Schuëller G.I.: Engineering applications of stochastic mechanics -achievements and prospects. In: Naess A., Krenk S. (eds.) Proceedings of the IUTAM-Symposium on Advances in Nonlinear Stochastic Mechanics, pp. 383–402. Kluver, Doordrecht (1996)

  79. Schuëller G.I. (2006) Uncertainty and reliability analysis of structural dynamical systems. In: Mota Soares C.A., Martins J.A.C., Rodrigues H.C., Ambrósio J.A.C. (eds), Computational Mechanics—Solids, Structures and Coupled Problems. Springer, The Netherlands, pp. 541–554

    Google Scholar 

  80. Schuëller G.I., Pandey M.D., Pradlwarter H.J. (1994) Equivalent linearization (EQL) in engineering practice for aseismic design. J. Probab. Eng. Mech. 9, 95–102

    Article  Google Scholar 

  81. Schuëller G.I., Pradlwarter H.J.: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview. Struct. Safe. (2006) (to appear)

  82. Schuëller G.I., Pradlwarter H.J., Koutsourelakis P.S. (2004) A critical appraisal of reliability estimation procedures for high dimensions. Probab. Eng. Mech. 19(4): 463–474

    Article  Google Scholar 

  83. Schuëller G.I., Pradlwarter H.J., Vasta M., Harnpornchai N. (1998) Benchmark-study on non-linear stochastic structural dynamics. In: Shiraishi N., Shinozuka M., Wen Y.K. (eds), Proceedings of the 7th International Conference on Structural Safety and Reliability (ICOSSAR’97). A.A. Balkema, Rotterdam, pp. 355–361

    Google Scholar 

  84. Schuëller G.I., Stix R. (1987) A critical appraisal of methods to determine failure probabilities. J. Struct. Saf. 4, 293–309

    Article  Google Scholar 

  85. Schuëller G.I. (ed) (1997) A state-of-the-art report on computational stochastic mechanics. J. Probab. Eng. Mech. 12(4): 197–313

    Google Scholar 

  86. Shinozuka M. (1972) Monte Carlo solution of structural dynamics. Comput. Struct. 2(5+6): 855–874

    Article  Google Scholar 

  87. Shinozuka M., Deodatis G. (1996) Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Appl. Mech. Rev. 49(1): 29–53

    Article  Google Scholar 

  88. Soize C. (1988) Steady state solution of Fokker–Planck equation in higher dimension. Probab. Engr. Mech. 3(4): 196–206

    Article  Google Scholar 

  89. Soize C. (1994) The Fokker–Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions. World Scientific, Singapore

    MATH  Google Scholar 

  90. Soong T.T. (1973) Random Differential Equations in Science and Engineering. Academic, New York

    MATH  Google Scholar 

  91. Soong T.T., Grigoriu M. (1993) Random Vibration of Mechanical and Structural Systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  92. Spencer Jr.B.F., Bergman L.A. (1993) On the numerical solution of the Fokker–Planck equation for nonlinear stochastic systems. Nonlin. Dyn. 4, 357–372

    Article  Google Scholar 

  93. Székely G.S., Schuëller G.I. (2001) Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties. Comput. Meth. Appl. Mech. Eng. 191(8-10): 799–816

    Article  Google Scholar 

  94. Takada T. (1990) Weighted integral method in stochastic finite element analysis. Probab. Eng. Mech. 5(3): 146–156

    Article  Google Scholar 

  95. Thacker B.H., Riha D.S., Fitch S.H.K., Huyse L.J., Pleming J.B. (2006) Probabilistic engineering analysis using the nessus software. Struct. Saf. 28(1–2): 83–107

    Article  Google Scholar 

  96. Torrie G.M., Valleau J.P. (1977) Non-physical sampling distributions in Monte Carlo free energy estimation: umbrella sampling. J. Comput. Phy. 23(2): 187–199

    Article  Google Scholar 

  97. Vanmarcke E.H., Grigoriu M. (1983) Stochastic finite element analysis of simple beams. J. Eng. Mech. ASCE 109(5): 1203–1214

    Article  Google Scholar 

  98. Vanmarcke E.H., Heredia-Zavoni E., Fenton G.A. (1993) Conditional simulation of spatially correlated earthquake ground motion. J. Eng. Mech. ASCE 119(11): 2333–2352

    Article  Google Scholar 

  99. Vanzini R., Rossetto P., Conz L., Ferro G., Righetti G.: Requalification of offshore platforms on the basis of inspection results and probabilistic analyses. In: JCSS, Offshore Technology Conference, paper no. OCT 5930, pp. 481–492, Houston (1992)

  100. Wen Y.K. (1980) Equivalent linearization of hysteretic systems under random excitation. J. Appl. Mech. ASME 42(2): 39–52

    Article  Google Scholar 

  101. Wen Y.K. (1990) Structural Load Modelling and Combination for Performance and Safety Evaluation. Elsevier, Amsterdam

    Google Scholar 

  102. Wierzbicki W. (1936) Safety of Structures as a Probability Problem, p 690. Przeglad Techniczny, Warsaw

    Google Scholar 

  103. Wu W.F., Lin Y.K. (1984) Cumulant-neglect closure for nonlinear oscillators under parametric and external excitations. Int. J. Non-Lin. Mech. 19, 349–362

    MathSciNet  MATH  Google Scholar 

  104. Yang J.-N. (1972) Simulation of random envelope processes. J. Sound Vib. 25(1): 73–85

    Article  Google Scholar 

  105. Yang J.-N. (1973) On the normality and accuracy of simulated random processes. J. Sound Vib. 26(3): 417–428

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Schuëller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuëller, G.I. Developments in stochastic structural mechanics. Arch Appl Mech 75, 755–773 (2006). https://doi.org/10.1007/s00419-006-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0067-z

Keywords

Navigation