Skip to main content
Log in

POD a-posteriori error estimates for linear-quadratic optimal control problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The main focus of this paper is on an a-posteriori analysis for the method of proper orthogonal decomposition (POD) applied to optimal control problems governed by parabolic and elliptic PDEs. Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the POD model, is from the (unknown) exact one. Numerical examples illustrate the realization of the proposed approach for linear-quadratic problems governed by parabolic and elliptic partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atwell, J.A., Borggaard, J.T., King, B.B.: Reduced order controllers for Burgers’ equation with a nonlinear observer. Int. J. Appl. Math. Comput. Sci. 11, 1311–1330 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Arian, E., Fahl, M., Sachs, E.W.: Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000)

  4. Benner, P., Quintana-Ortí, E.S.: Model reduction based on spectral projection methods. In: Benner, P., Mehrmann, V., Sorensen, D.C. (eds.) Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 5–48 (2005)

  5. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems, vol. I. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  6. Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45, 1586–1611 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casas, E., Tröltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31, 695–712 (2002)

    MATH  Google Scholar 

  8. Dautray, R., Lions, J.-L.: Evolution Problems I. Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Diwoky, F., Volkwein, S.: Nonlinear boundary control for the heat equation utilizing proper orthogonal decomposition. Int. Ser. Numer. Math. 138, 73–87 (2001)

    MathSciNet  Google Scholar 

  10. Henri, T., Yvon, M.: Convergence estimates of POD Galerkin methods for parabolic problems. Technical Report No. 02-48, Institute of Mathematical Research of Rennes (2002)

  11. Hepberger, A.: Mathematical methods for the prediction of the interior car noise in the middle frequency range. PhD thesis, TU Graz, Institute for Mathematics, Austria (2002)

  12. Hepberger, A., Volkwein, S., Diwoky, F., Priebsch, H.-H.: Impedance identification out of pressure data with a hybrid measurement-simulation methodology up to 1 kHz. In: Proceedings of International Conference on Noise and Vibration Engineering, Leuven, Belgium (2006)

  13. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  14. Hinze, M., Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39, 319–345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  16. Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM: Math. Model. Numer. Anal. 42, 1–23 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lall, S., Marsden, J.E., Glavaski, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12, 519–535 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasiecka, I.: Convergence estimates for semidiscrete approximations of nonselfadjoint parabolic equations. SIAM J. Numer. Anal. 21, 894–909 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lasiecka, I.: Ritz-Galerkin approximation of abstract parabolic boundary value problems with rough boundary data—L p -theory. Math. Comput. 47, 55–75 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. 1: Abstract Parabolic Systems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  22. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  23. Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33, 223–236 (2001)

    Article  MATH  Google Scholar 

  24. Malanowski, K., Büskens, C.,  Maurer, H.: Convergence of approximations to nonlinear control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbation, pp. 253–284. Marcel Dekker, New York (1997)

    Google Scholar 

  25. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operation Research, 2nd edn. (2006)

  26. Ravindran, S.S.: Adaptive reduced order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 28, 1924–1942 (2002)

    Article  MathSciNet  Google Scholar 

  27. Read, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, Boston (1980)

    Google Scholar 

  28. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15, 997–1013 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Volkwein, S.: Model Reduction using Proper Orthogonal Decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz. see http://www.uni-graz.at/imawww/volkwein/POD.pdf

  30. Volkwein, S., Hepberger, A.: Impedance identification by POD model reduction techniques. at-Autometisierungstechnik 8, 437–446 (2008)

    Article  Google Scholar 

  31. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. In: American Institute of Aeronautics and Astronautics (AIAA), pp. 2323–2330 (2002)

  32. Yosida, K.: Functional Analysis. Springer, Berlin (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Volkwein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tröltzsch, F., Volkwein, S. POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput Optim Appl 44, 83–115 (2009). https://doi.org/10.1007/s10589-008-9224-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9224-3

Keywords

Navigation