Skip to main content
Log in

An RBF Based Finite Difference Method for the Numerical Approximation of Multi-term Nonlinear Time Fractional Two Dimensional Diffusion-Wave Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The main goal of this manuscript is to develop an RBF-based meshfree method to solve the multi-term time-fractional nonlinear two-dimensional diffusion-wave equation numerically. We discussed the present scheme’s stability analysis and theoretically proved that the scheme is convergent. Time fractional derivatives are defined in Caputo’s sense. Numerical examples on the regular and irregular domains with uniform and non-uniform points are given to validate the ability and accuracy of the developed scheme. The present results show that the proposed method is efficient and reliable for modeling and simulating the considered problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  MATH  Google Scholar 

  2. Baseri, A., Abbasbandy, S., Babolian, E.: A collocation method for fractional diffusion equation in a long time with Chebyshev functions. Appl. Math. Comput. 322, 55–65 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Bhardwaj, A., Kumar, A.: A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation. Appl. Numer. Math. 160, 146–165

  4. Bhardwaj, A., Kumar, A.: A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01134-4

    Article  MATH  Google Scholar 

  5. Bhardwaj, A., Kumar, A.: Numerical solution of time fractional tricomi-type equation by an rbf based meshless method. Eng. Anal. Boundary Elem. 118, 96–107 (2020). https://doi.org/10.1016/j.enganabound.2020.06.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Cen, Z., Huang, J., Xu, A., Le, A.: Numerical approximation of a time-fractional Black-Scholes equation. Comput. Math. Appl. 75(8), 2874–2887 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandhini, G., Prashanthi, K.S., Vijesh, V.A.: A radial basis function method for fractional Darboux problems. Eng. Anal. Boundary Elem. 86, 1–18 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59(5), 1614–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Staelen, R.H., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional Black-Scholes model. Comput. Math. Appl. 74(6), 1166–1175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan, M., Abbaszadeh, M.: An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch-Torrey equations. Appl. Numer. Math. 131, 190–206 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit rbf meshless approach for solving the time fractional nonlinear Sine-Gordon and Klein-Gordon equations. Eng. Anal. Boundary Elem. 50, 412–434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. Algorithms 73(2), 445–476 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esen, A., Tasbozan, O., Ucar, Y., Yagmurlu, N.M.: A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations. Tbilisi Math. J. 8(2) (2015)

  15. Gao, G.-H., Sun, Z.-Z., Zhang, Y.-N.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231(7), 2865–2879 (2012)

  16. Ghehsareh, H.R., Bateni, S.H., Zaghian, A.: A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation. Eng. Anal. Boundary Elem. 61, 52–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghehsareh, H.R., Zaghian, A., Raei, M.: A local weak form meshless method to simulate a variable order time-fractional mobile-immobile transport model. Eng. Anal. Boundary Elem. 90, 63–75 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golbabai, A., Nikpour, A.: Computing a numerical solution of two dimensional non-linear Schrödinger equation on complexly shaped domains by rbf based differential quadrature method. J. Comput. Phys. 322, 586–602 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gu, Y., Zhuang, P.: Anomalous sub-diffusion equations by the meshless collocation method. Aust. J. Mech. Eng. 10(1), 1–8 (2012)

    Article  Google Scholar 

  20. Gu, Y., Zhuang, P., Liu, Q.: An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Methods 8(04), 653–665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Boundary Elem. 38, 31–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hosseini, V.R., Shivanian, E., Chen, W.: Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur. Phys. J. Plus 130(2), 33 (2015)

    Article  Google Scholar 

  23. Hosseini, V.R., Shivanian, E., Chen, W.: Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J. Comput. Phys. 312, 307–332 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jafarabadi, A., Shivanian, E.: Numerical simulation of nonlinear coupled Burgers’ equation through meshless radial point interpolation method. Eng. Anal. Boundary Elem. 95, 187–199 (2018)

  25. Jiang, H., Liu, F., Meerschaert, M.M., McGough, R.J.: The fundamental solutions for multi-term modified power law wave equations in a finite domain. Electron. J. Math. Anal. Appl. 1(1), 55 (2013)

    MATH  Google Scholar 

  26. Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389(2), 1117–1127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kumar, A., Bhardwaj, A.: A local meshless method for time fractional nonlinear diffusion wave equation. Numer. Algorithms 1–24 (2020)

  30. Kumar, A., Bhardwaj, A., Dubey, S.: A local meshless method to approximate the time-fractional telegraph equation. Eng. Comput. (2020)

  31. Kumar, A., Bhardwaj, A., Kumar, B.V.R.: A meshless local collocation method for time fractional diffusion wave equation. Comput. Math. Appl. (2019)

  32. Li, Z., Liu, Y., Yamamoto, M.: Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calculus Appl. Anal. 16(1), 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35(8), 4103–4116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Luchko, Y.: Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59(5), 1766–1772 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mardani, A., Hooshmandasl, M.R., Heydari, M.H., Cattani, C.: A meshless method for solving the time fractional advection-diffusion equation with variable coefficients. Comput. Math. Appl. 75(1), 122–133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Boundary Elem. 37(2), 475–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng. Anal. Boundary Elem. 38, 72–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nagy, A.M.: Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method. Appl. Math. Comput. 310, 139–148 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Pirkhedri, A., Javadi, H.H.S.: Solving the time-fractional diffusion equation via Sinc-Haar collocation method. Appl. Math. Comput. 257, 317–326 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, vol. 23. Springer Science & Business Media (2008)

  44. Ray, S.S.: Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1295–1306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ray, S.S., Bera, R.K.: Analytical solution of a fractional diffusion equation by Adomian decomposition method. Appl. Math. Comput. 174(1), 329–336 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Salehi, R.: A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer. Algorithms 74(4), 1145–1168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shivanian, E.: Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng. 89, 173–188 (2014)

    Article  Google Scholar 

  48. Shivanian, E., Abbasbandy, S., Alhuthali, M.S., Alsulami, H.H.: Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng. Anal. Boundary Elem. 56, 98–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shivanian, E., Jafarabadi, A.: Analysis of the spectral meshless radial point interpolation for solving fractional reaction-subdiffusion equation. J. Comput. Appl. Math. 336, 98–113 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shivanian, E., Jafarabadi, A.: An improved meshless algorithm for a kind of fractional cable problem with error estimate. Chaos Solit. Fract. 110, 138–151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shivanian, E., Jafarabadi, A.: An inverse problem of identifying the control function in two and three-dimensional parabolic equations through the spectral meshless radial point interpolation. Appl. Math. Comput. 325, 82–101 (2018)

    MathSciNet  MATH  Google Scholar 

  52. SoltaniSarvestani, F., Heydari, M.H., Niknam, A., Avazzadeh, Z.: A wavelet approach for the multi-term time fractional diffusion-wave equation. Int. J. Comput. Math. 1–22 (2018)

  53. Sun, H., Liu, X., Zhang, Y., Pang, G., Garrard, R.: A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation. J. Comput. Phys. 345, 74–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  MATH  Google Scholar 

  55. Sun, Z-z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

  56. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220(2), 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tayebi, A., Shekari, Y., Heydari, M.H.: A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tenreiro Machado, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G., Galhano, A.F.: Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010 (2010)

  59. Uddin, M., Haq, S.: RBFs approximation method for time fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4208–4214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Vong, S., Wang, Z.: A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions. J. Comput. Phys. 274, 268–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yan, L., Yang, F.: Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems. Comput. Math. Appl. 67(8), 1507–1520 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yang, J.Y., Zhao, Y.M., Liu, N., Bu, W.P., Xu, T.L., Tang, Y.F.: An implicit MLS meshless method for 2-D time dependent fractional diffusion-wave equation. Appl. Math. Model. 39(3–4), 1229–1240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yao, G.: An improved localized method of approximate particular solutions for solving elliptic pdes. Comput. Math. Appl. 71(1), 171–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yuste, S.B., Quintana-Murillo, J.: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numer. Algorithms 71(1), 207–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhuang, P., Gu, Y., Liu, F., Turner, I., Yarlagadda, P.K.D.V.: Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method. Int. J. Numer. Meth. Eng. 88(13), 1346–1362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the comments/suggestions of the referee which have greatly improved the paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Kumar, A. & Tiwari, A.K. An RBF Based Finite Difference Method for the Numerical Approximation of Multi-term Nonlinear Time Fractional Two Dimensional Diffusion-Wave Equation. Int. J. Appl. Comput. Math 8, 84 (2022). https://doi.org/10.1007/s40819-022-01270-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01270-z

Keywords

Navigation