Skip to main content
Log in

A mixed finite element and mesh-free method using linear complementarity theory for gradient plasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A mixed finite element (FE) and mesh-free (MF) method for gradient-dependent plasticity using linear complementarity theory is presented. The assumed displacement field is interpolated in terms of its discrete values defined at the nodal points of the FE mesh with the FE shape functions, whereas the assumed plastic multiplier field required to express its Laplacian is interpolated in terms of its discrete values defined at the integration points of the FE mesh with the MF interpolation functions. A standard form of linear complementarity problem is constructed by combining the weak form of momentum conservation equation and pointwise enforcements of both non-local constitutive equation and non-local yield criterion. The discrete values of the plastic multiplier are taken as the only primary unknowns to be determined. The numerical results demonstrate the validity of the proposed method in the simulation of the strain localization phenomenon due to strain softening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazant ZP, Belytschko T, Chang TP (1984) Continuum theory for strain softening. J Eng Mech-ASCE 110: 1666–1692

    Article  Google Scholar 

  2. de Borst R (1989) Numerical methods for bifurcation analysis in geomechanics. Ingenieur-Archiv 59: 160–174

    Article  Google Scholar 

  3. Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67: 69–85

    Article  MATH  Google Scholar 

  4. Eringen AC, Edelen DGB (1972) On non-local elasticity. Int J Eng Sci 10: 233–248

    Article  MATH  MathSciNet  Google Scholar 

  5. Mühlhaus HB (1989) Application of Cosserat theory in numerical solutions of limit load problems. Ingenieur-Archiv 59: 124–137

    Article  Google Scholar 

  6. de Borst R (1991) Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 8: 317–332

    Article  Google Scholar 

  7. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41: 1825–1857

    Article  MATH  MathSciNet  Google Scholar 

  8. Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 24: 581–597

    Article  MATH  Google Scholar 

  9. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Tech-ASME 106: 326–330

    Article  Google Scholar 

  10. Aifantis EC (1987) The physics of plastic deformation. Int J Plasticity 3: 211–247

    Article  MATH  Google Scholar 

  11. Mühlhaus HB, Aifantis EC (1991) A variational principle for gradient plasticity. Int J Solids Struct 28: 845–857

    Article  MATH  Google Scholar 

  12. de Borst R, Mühlhaus HB (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35: 521–539

    Article  MATH  Google Scholar 

  13. Sluys LJ, de Borst R, Mühlhaus HB (1993) Wave propagation, localization and dispersion in a gradient-dependent medium. Int J Solids Struct 30: 1153–1171

    Article  MATH  Google Scholar 

  14. Li XK, Cescotto S (1996) Finite element method for gradient plasticity at large strains. Int J Numer Methods Eng 39: 619–633

    Article  MATH  Google Scholar 

  15. Pamin J, Askes H, de Borst R (2003) Two gradient plasticity theories discretized with the element-free Galerkin method. Comput Methods Appl Mech Eng 192: 2377–2403

    Article  MATH  Google Scholar 

  16. Vernerey F, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55: 2603–2651

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu WK, McVeigh C (2008) Predictive multiscale theory for design of heterogeneous materials. Comput Mech 42: 147–170

    Article  MATH  MathSciNet  Google Scholar 

  18. McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197: 3268–3290

    Article  MATH  MathSciNet  Google Scholar 

  19. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  20. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139: 3–47

    Article  MATH  Google Scholar 

  21. Chen JS, Wu CT, Belytschko T (2000) Regularization of material instabilities by meshfree approximations with intrinsic length scales. Int J Numer Methods Eng 47: 1303–1322

    Article  MATH  Google Scholar 

  22. Li S, Liu WK (2000) Numerical simulations of strain localization in inelastic solids using mesh-free methods. Int J Numer Methods Eng 48: 1285–1309

    Article  MATH  Google Scholar 

  23. Zhang X, Yao ZH, Zhang ZF (2006) Application of MLPG in large deformation analysis. Acta Mech Sin 22: 331–340

    Article  MATH  MathSciNet  Google Scholar 

  24. Gu YT, Wang QX, Lam KY (2007) A meshless local Kriging method for large deformation analyses. Comput Methods Appl Mech Eng 196: 1673–1684

    Article  MATH  Google Scholar 

  25. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MATH  MathSciNet  Google Scholar 

  26. Li SF, Liu WK, Rosakis AJ, Belytschko T, Hao W (2002) Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. Int J Solids Struct 39: 1213–1240

    Article  MATH  Google Scholar 

  27. Chen JS, Zhang XW, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193: 2827–2844

    Article  MATH  Google Scholar 

  28. Manzari MT, Regueiro RA (2005) Gradient plasticity modeling of geomaterials in a meshfree environment. Part I: theory and variational formulation. Mech Res Commun 32: 536–546

    Article  MATH  MathSciNet  Google Scholar 

  29. Comi C, Perego U (1996) A generalized variable formulation for gradient dependent softening plasticity. Int J Numer Methods Eng 39: 3731–3755

    Article  MATH  Google Scholar 

  30. Zhang HW, Schrefler BA (2000) Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media: one dimensional model. Eur J Mech A Solids 19: 503–524

    Article  Google Scholar 

  31. Crisfield MA (1991) Non-linear finite element analysis of solids and structures, vol 1. Wiley, Chichester

    Google Scholar 

  32. Murty KG (1988) Linear complementarity, linear and nonlinear programming. Helderman-Verlag, Berlin

    MATH  Google Scholar 

  33. Zienkiewicz OC, Shiomi T (1984) Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. Int J Numer Anal Methods 8(1): 71–96

    Article  MATH  Google Scholar 

  34. Lewis RW, Schrefler BA (1987) The finite element method in the deformation and consolidation of porous media. Wiley, Chichester

    Google Scholar 

  35. Andrade JE, Borja RI (2007) Modeling deformation banding in dense and loose fluid-saturated sands. Finite Elem Anal Des 43: 361–383

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xikui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, X. A mixed finite element and mesh-free method using linear complementarity theory for gradient plasticity. Comput Mech 47, 171–185 (2011). https://doi.org/10.1007/s00466-010-0527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0527-8

Keywords

Navigation