Skip to main content
Log in

An Efficient Method for Integrating von-Mises Plasticity with Mixed Hardening

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Integrating the constitutive equations in plasticity in order to update the stresses is the most important part of an elastoplastic finite element analysis. Here, a von-Mises plasticity model along with the isotropic and kinematic hardenings is taken into account in the small strain realm. An accurate integration is formulated by converting the differential constitutive equations into an augmented stress space and utilizing the return mapping algorithm. Subsequently, a broad range of numerical tests are performed to investigate the accuracy and performance of the proposed integration. The results demonstrate the robustness of the new integration scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Artioli E, Auricchio F, Beirão da Veiga L (2005) Integration scheme for von-Mises plasticity models based on exponential maps: numerical investigations and theoretical considerations. Int J Numer Methods Eng 64(9):1133–1165

    Article  MathSciNet  Google Scholar 

  • Artioli E, Auricchio F, Beirão da Veiga L (2006) A novel ‘optimal’ exponential-based integration algorithm for von-Mises plasticity with linear hardening: theoretical analysis on yield consistency, accuracy, convergence and numerical investigations. Int J Numer Methods Eng 67(4):449–498

    Article  MathSciNet  Google Scholar 

  • Artioli E, Auricchio F, Beirão da Veiga L (2007) Second-order accurate integration algorithms for von-Mises plasticity with a nonlinear kinematic hardening mechanism. Comput Methods Appl Mech Eng 196(9):1827–1846

    Article  MathSciNet  Google Scholar 

  • Auricchio F, Beirão da Veiga L (2003) On a new integration scheme for von-Mises plasticity with linear hardening. Int J Numer Methods Eng 56(10):1375–1396

    Article  Google Scholar 

  • Hong H-K, Liu C-S (1999) Internal symmetry in bilinear elastoplasticity. Int J Non-Linear Mech 34(2):279–288

    Article  MathSciNet  Google Scholar 

  • Hong H-K, Liu C-S (2000) Internal symmetry in the constitutive model of perfect elastoplasticity. Int J Non-Linear Mech 35(3):447–466

    Article  Google Scholar 

  • Kobayashi M, Ohno N (2002) Implementation of cyclic plasticity models based on a general form of kinematic hardening. Int J Numer Methods Eng 53(9):2217–2238

    Article  Google Scholar 

  • Kojić M (1996) The governing parameter method for implicit integration of viscoplastic constitutive relations for isotropic and orthotropic metals. Comput Mech 19(1):49–57

    Article  Google Scholar 

  • Kojić M, Bathe KJ (1987) The “effective stress-function” algorithm for thermo-elasto-plasticity and creep. Int J Numer Methods Eng 24:1509–1532

    Article  Google Scholar 

  • Kojić M, Bathe KJ (2005) Inelastic analysis of solids and structures. Springer, Berlin

    Google Scholar 

  • Liu C-S (2004) International symmetry groups for the Drucker–Prager material model of plasticity and numerical integrating methods. Int J Solids Struct 41(14):3771–3791

    Article  Google Scholar 

  • Liu C-S, Liu L-W, Hong H-K (2016) A scheme of automatic stress-updating on yield surfaces for a class of elastoplastic models. Int J Non-Linear Mech 85:6–22

    Article  Google Scholar 

  • Rezaiee-Pajand M, Nasirai C (2007) Accurate integration scheme for von-Mises plasticity with mixed-hardening based on exponential maps. Eng Comput 24(6):608–635

    Article  Google Scholar 

  • Rezaiee-Pajand M, Nasirai C (2008) On the integration scheme for Drucker–Prager’s elastoplastic models based on exponential maps. Int J Numer Methods Eng 74(10):799–826

    Article  MathSciNet  Google Scholar 

  • Rezaiee-Pajand M, Sharifian M (2011) A novel formulation for integrating nonlinear kinematic hardening Drucker–Prager’s yield condition. Eur J Mech A/Solids 31(1):163–178

    Article  MathSciNet  Google Scholar 

  • Rezaiee-Pajand M, Nasirai C, Sharifian M (2010) Application of exponential-based methods in integrating the constitutive equations with multi-component nonlinear kinematic hardening. ASCE J Eng Mech 136(12):1502–1518

    Article  Google Scholar 

  • Rezaiee-Pajand M, Nasirai C, Sharifian M (2011a) Integration of nonlinear mixed hardening models. Multidiscip Model Mater Struct 7(3):266–305

    Article  Google Scholar 

  • Rezaiee-Pajand M, Sharifian M, Sharifian M (2011b) Accurate and approximate integrations of Drucker–Prager plasticity with linear isotropic and kinematic hardening. Eur J Mech A/Solids 30(3):345–361

    Article  Google Scholar 

  • Rezaiee-Pajand M, Sharifian M, Sharifian M (2013) Integrating the pressure-sensitive nonassociative plasticity by exponential-based methods. ASME J Eng Mater Technol 135:1–22

    Article  Google Scholar 

  • Rezaiee-Pajand M, Auricchio F, Sharifian M, Sharifian M (2014a) Computational plasticity of mixed hardening pressure-dependency constitutive equations. Acta Mech 255:1699–1733

    Article  MathSciNet  Google Scholar 

  • Rezaiee-Pajand M, Sharifian M, Sharifian M (2014b) Angles based integration for generalized non-linear plasticity along with application of optimal implicit SSP Runge–Kutta methods. Int J Mech Sci 87:241–257

    Article  Google Scholar 

  • Rezaiee-Pajand M, Auricchio F, Sharifian M, Sharifian M (2015) Exponential-based integration for Bigoni–Piccolroaz plasticity model. Eur J Mech A/Solids 51:107–122

    Article  MathSciNet  Google Scholar 

  • Simo JC, Taylor RL (1986) A return mapping algorithm for plane stress elastoplasticity. Int J Numer Methods Eng 22(3):649–670

    Article  MathSciNet  Google Scholar 

  • Zhang M, Benítez JM, Montnás FJ (2018) Cyclic plasticity using Prager’s translation rule and both nonlinear kinematic and isotropic hardening: theory, validation and algorithmic implementation. Comput Methods Appl Mech Eng 328:565–593

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Sharifian.

Appendix

Appendix

For the sake of the convenience in using the presented algorithm in the computational implementations, the entries of the vectors and matrixes are given in the following:

$${\mathbf{\sigma = }}\left[ {\begin{array}{*{20}c} {\sigma_{11} } & {\sigma_{12} } & {\sigma_{13} } & {\sigma_{21} } & {\sigma_{22} } & {\sigma_{23} } & {\sigma_{31} } & {\sigma_{32} } & {\sigma_{33} } \\ \end{array} } \right]^{\text{T}}$$
(53)
$${\mathbf{i}} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{array} } \right]^{\text{T}}$$
(54)
$${\mathbf{s}} = {\varvec{\upsigma}} - p\,{\mathbf{i}} = \left[ {\begin{array}{*{20}c} {s_{11} } & {s_{12} } & {s_{13} } & {s_{21} } & {s_{22} } & {s_{23} } & {s_{31} } & {s_{32} } & {s_{33} } \\ \end{array} } \right]^{\text{T}}$$
(55)
$${\mathbf{\varepsilon = }}\left[ {\begin{array}{*{20}c} {\varepsilon_{11} } & {\varepsilon_{12} } & {\varepsilon_{13} } & {\varepsilon_{21} } & {\varepsilon_{22} } & {\varepsilon_{23} } & {\varepsilon_{31} } & {\varepsilon_{32} } & {\varepsilon_{33} } \\ \end{array} } \right]^{\text{T}}$$
(56)
$${\mathbf{e}} = {\varvec{\upvarepsilon}} - \frac{1}{3}\theta \,{\mathbf{i}}{\mathbf{ = }}\left[ {\begin{array}{*{20}c} {e_{11} } & {e_{12} } & {e_{13} } & {e_{21} } & {e_{22} } & {e_{23} } & {e_{31} } & {e_{32} } & {e_{33} } \\ \end{array} } \right]^{\text{T}}$$
(57)
$${\mathbf{\alpha = }}\left[ {\begin{array}{*{20}c} {\alpha_{11} } & {\alpha_{12} } & {\alpha_{13} } & {\alpha_{21} } & {\alpha_{22} } & {\alpha_{23} } & {\alpha_{31} } & {\alpha_{32} } & {\alpha_{33} } \\ \end{array} } \right]^{\text{T}}$$
(58)
$${\mathbf{\varSigma = }}{\mathbf{s}} - {\varvec{\upalpha}} = \left[ {\begin{array}{*{20}c} {\varSigma_{11} } & {\varSigma_{12} } & {\varSigma_{13} } & {\varSigma_{21} } & {\varSigma_{22} } & {\varSigma_{23} } & {\varSigma_{31} } & {\varSigma_{32} } & {\varSigma_{33} } \\ \end{array} } \right]^{\text{T}}$$
(59)
$${\mathbf{n}} = {{\varvec{\Sigma}} \mathord{\left/ {\vphantom {{\varvec{\Sigma}} R}} \right. \kern-0pt} R} = \left[ {\begin{array}{*{20}c} {{{\varSigma_{11} } \mathord{\left/ {\vphantom {{\varSigma_{11} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{12} } \mathord{\left/ {\vphantom {{\varSigma_{12} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{13} } \mathord{\left/ {\vphantom {{\varSigma_{13} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{21} } \mathord{\left/ {\vphantom {{\varSigma_{21} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{22} } \mathord{\left/ {\vphantom {{\varSigma_{22} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{23} } \mathord{\left/ {\vphantom {{\varSigma_{23} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{31} } \mathord{\left/ {\vphantom {{\varSigma_{31} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{32} } \mathord{\left/ {\vphantom {{\varSigma_{32} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{33} } \mathord{\left/ {\vphantom {{\varSigma_{33} } R}} \right. \kern-0pt} R}} \\ \end{array} } \right]^{\text{T}}$$
(60)
$${\mathbf{\mathbb{I}}}_{\text{dev}} = \left[ {\begin{array}{*{20}c} {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}} & 0 & 0 & 0 & { - {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}} & 0 & 0 & 0 & { - {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}} \\ {} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {} & {} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ {} & {} & {} & 1 & 0 & 0 & 0 & 0 & 0 \\ {} & {} & {} & {} & {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}} & 0 & 0 & 0 & { - {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}} \\ {} & {} & {} & {} & {} & 1 & 0 & 0 & 0 \\ {} & {} & {\text{sym}} & {} & {} & {} & 1 & 0 & 0 \\ {} & {} & {} & {} & {} & {} & {} & 1 & 0 \\ {} & {} & {} & {} & {} & {} & {} & {} & {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}} \\ \end{array} } \right]_{9 \times 9}$$
(61)
$${\mathbf{X}} = \left[ {\begin{array}{*{20}c} {X^{0} \overline{{\varvec{\Sigma}}} } \\ {X^{0} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{X}}^{\text{s}} } \\ {X^{0} } \\ \end{array} } \right] = X^{0} \left[ {\begin{array}{*{20}c} {{{\varSigma_{11} } \mathord{\left/ {\vphantom {{\varSigma_{11} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{12} } \mathord{\left/ {\vphantom {{\varSigma_{12} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{13} } \mathord{\left/ {\vphantom {{\varSigma_{13} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{21} } \mathord{\left/ {\vphantom {{\varSigma_{21} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{22} } \mathord{\left/ {\vphantom {{\varSigma_{22} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{23} } \mathord{\left/ {\vphantom {{\varSigma_{23} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{31} } \mathord{\left/ {\vphantom {{\varSigma_{31} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{32} } \mathord{\left/ {\vphantom {{\varSigma_{32} } R}} \right. \kern-0pt} R}} & {{{\varSigma_{33} } \mathord{\left/ {\vphantom {{\varSigma_{33} } {R\begin{array}{*{20}c} {\begin{array}{*{20}c} {} & 1 \\ \end{array} } \\ \end{array} }}} \right. \kern-0pt} {R\begin{array}{*{20}c} {\begin{array}{*{20}c} {} & 1 \\ \end{array} } \\ \end{array} }}} \\ \end{array} } \right]^{\text{T}}$$
(62)
$${\mathbf{\mathbb{A}}}_{\text{e}} = \frac{2G}{R}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{11} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{12} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{13} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{21} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{22} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{23} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{31} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{32} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{33} } \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right]_{10 \times 10}$$
(63)
$${\mathbf{\mathbb{A}}}_{\text{e}} = \frac{2G}{R}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{11} } \\ {} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{12} } \\ {} & {} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{13} } \\ {} & {} & {} & 0 & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{21} } \\ {} & {} & {} & {} & 0 & 0 & 0 & 0 & 0 & {\dot{e}_{22} } \\ {} & {} & {} & {} & {} & 0 & 0 & 0 & 0 & {\dot{e}_{23} } \\ {} & {} & {} & {} & {} & {} & 0 & 0 & 0 & {\dot{e}_{31} } \\ {} & {} & {\text{sym}} & {} & {} & {} & {} & 0 & 0 & {\dot{e}_{32} } \\ {} & {} & {} & {} & {} & {} & {} & {} & 0 & {\dot{e}_{33} } \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & 0 \\ \end{array} } \right]_{10 \times 10}$$
(64)
$${\mathbf{\bar{\mathbb{G}}}}_{\text{e}} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {{{2G\Delta e_{11} } \mathord{\left/ {\vphantom {{2G\Delta e_{11} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {{{2G\Delta e_{12} } \mathord{\left/ {\vphantom {{2G\Delta e_{12} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & {{{2G\Delta e_{13} } \mathord{\left/ {\vphantom {{2G\Delta e_{13} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & {{{2G\Delta e_{21} } \mathord{\left/ {\vphantom {{2G\Delta e_{21} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & {{{2G\Delta e_{22} } \mathord{\left/ {\vphantom {{2G\Delta e_{22} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & {{{2G\Delta e_{23} } \mathord{\left/ {\vphantom {{2G\Delta e_{23} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & {{{2G\Delta e_{31} } \mathord{\left/ {\vphantom {{2G\Delta e_{31} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & {{{2G\Delta e_{32} } \mathord{\left/ {\vphantom {{2G\Delta e_{32} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & {{{2G\Delta e_{33} } \mathord{\left/ {\vphantom {{2G\Delta e_{33} } {R_{n} }}} \right. \kern-0pt} {R_{n} }}} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right]_{10 \times 10}$$
(65)
$$\Delta {\hat{\mathbf{e}}} = {{\Delta {\mathbf{e}}} \mathord{\left/ {\vphantom {{\Delta {\mathbf{e}}} {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}} = \left[ {\begin{array}{*{20}c} {{{e_{11} } \mathord{\left/ {\vphantom {{e_{11} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{12} } \mathord{\left/ {\vphantom {{e_{12} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{13} } \mathord{\left/ {\vphantom {{e_{13} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{21} } \mathord{\left/ {\vphantom {{e_{21} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{22} } \mathord{\left/ {\vphantom {{e_{22} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{23} } \mathord{\left/ {\vphantom {{e_{23} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{31} } \mathord{\left/ {\vphantom {{e_{31} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{32} } \mathord{\left/ {\vphantom {{e_{32} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} & {{{e_{33} } \mathord{\left/ {\vphantom {{e_{33} } {\left\| {\Delta {\mathbf{e}}} \right\|}}} \right. \kern-0pt} {\left\| {\Delta {\mathbf{e}}} \right\|}}} \\ \end{array} } \right]^{\text{T}}$$
(66)

At the end, the entries of the matrix \({\mathbf{\bar{\mathbb{G}}}}_{\text{p}}\) can be easily obtained by using the above vector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haji Aghajanpour, N., Sharifian, M. & Sharifian, M. An Efficient Method for Integrating von-Mises Plasticity with Mixed Hardening. Iran J Sci Technol Trans Mech Eng 44, 47–59 (2020). https://doi.org/10.1007/s40997-018-0248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0248-8

Keywords

Navigation