Skip to main content
Log in

Explicit mixed strain–displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields (P1P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr–Coulomb and Drucker–Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15(9):1413–1418

    Article  MathSciNet  MATH  Google Scholar 

  2. Malkus DS, Hughes TJR (1978) Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81

    Article  MATH  Google Scholar 

  3. Nagtegaal JC, Park DM, Rice JR (1974) On numerically accurate finite element solutions in the fully plastic range. Comput Methods Appl Mech Eng 15(4):153–177

    Article  MathSciNet  MATH  Google Scholar 

  4. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1–3):177–208

    Article  MathSciNet  MATH  Google Scholar 

  5. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. Wiley, New York

    Book  Google Scholar 

  6. Chiumenti M, Valverde Q, de Saracibar CA, Cervera M (2002) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191(46):5253–5264

    Article  MathSciNet  MATH  Google Scholar 

  7. Gil AJ, Lee CH, Bonet J, Aguirre M (2014) Stabilised petrov-galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Comput Methods Appl Mech Eng 276:659–690

    Article  MathSciNet  Google Scholar 

  8. Oñate E, Rojek J, Taylor RL, Zienkiewicz OC (2004) Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int J Numer Methods Eng 59(11):1473–1500

    Article  MathSciNet  MATH  Google Scholar 

  9. Taylor RL (2000) A mixed-enhanced formulation tetrahedral finite elements. Int J Numer Methods Eng 47(1–3):205–227

    Article  MathSciNet  MATH  Google Scholar 

  10. Cervera M, Chiumenti M (2009) Size effect and localization in J2 plasticity. Int J Solids Struct 46(17):3301–3312

    Article  MATH  Google Scholar 

  11. Cervera M, Chiumenti M, de Saracibar CA (2004) Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity. Int J Numer Anal Methods Geomech 28(5):373–393

    Article  MATH  Google Scholar 

  12. Cervera M, Chiumenti M, Di Capua D (2012) Benchmarking on bifurcation and localization in J2 plasticity for plane stress and plane strain conditions. Comput Methods Appl Mech Eng 241–244:206–224

    Article  Google Scholar 

  13. de Saracibar CA, Chiumenti M, Valverde Q, Cervera M (2006) On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity. Comput Methods Appl Mech Eng 195(9–12):1224–1251

    Article  MATH  Google Scholar 

  14. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics: Part I: formulation. Comput Methods Appl Mech Eng 199(37–40):2559–2570

    Article  MathSciNet  MATH  Google Scholar 

  15. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics: Part II: strain localization. Comput Methods Appl Mech Eng 199(37–40):2571–2589

    Article  MathSciNet  MATH  Google Scholar 

  16. Cervera M, Chiumenti M, Codina R (2015) Mesh objective modelling of cracks using continuous linear strain and displacement interpolations. Int J Numer Methods Eng 87:32–47

    MathSciNet  MATH  Google Scholar 

  17. Benedetti L, Cervera M, Chiumenti M (2011) Stress-accurate mixed fem for soil failure under shallow foundations involving strain localization in plasticity. Comput Geotech 64:962–987

    Google Scholar 

  18. Cervera M, Chiumenti M, Benedetti L, Codina R (2015) Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity. Comput Methods Appl Mech Eng 285:752–775

    Article  MathSciNet  Google Scholar 

  19. Castillo E, Codina R (2014) Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem. Comput Methods Appl Mech Eng 279:579–605

    Article  MathSciNet  Google Scholar 

  20. Chiumenti M, Cervera M, Codina R (2015) A mixed three-field fe formulation for stress accurate analysis including the incompressible limit. Comput Methods Appl Mech Eng 283:1095–1116

    Article  MathSciNet  Google Scholar 

  21. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191(39–40):4295–4321

    Article  MathSciNet  MATH  Google Scholar 

  22. Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1–2):3–24. Advances in Stabilized Methods in Computational Mechanics

  23. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127(1–4):387–401

    Article  MATH  Google Scholar 

  24. Oñate E, Valls A, García J (2006) Fic/fem formulation with matrix stabilizing terms for incompressible flows at low and high reynolds numbers. Comput Mech 38(4–5):440–455

    Article  MATH  Google Scholar 

  25. Bonet J, Gil AJ, Lee CH, Aguirre M, Ortigosa R (2015) A computational framework for polyconvex large strain elasticity. Comput Methods Appl Mech Eng 283:1061–1094

    Article  MathSciNet  Google Scholar 

  26. Bonet J, Gil AJ, Lee CH, Aguirre M, Ortigosa R (2015) A first order hyperbolic framework for large strain computational solid dynamics. Part I: total lagrangian isothermal elasticity. Comput Methods Appl Mech Eng 283:689–732

    Article  MathSciNet  Google Scholar 

  27. Lee CH, Gil AJ, Bonet J (2014) Development of a stabilised petrov-galerkin formulation for conservation laws in lagrangian fast solid dynamics. Comput Methods Appl Mech Eng 268:40–64

    Article  MathSciNet  MATH  Google Scholar 

  28. Schröder J, Wriggers P, Balzania D (2011) A new mixed finite element based on different approximations of the minors of deformation tensors. Comput Methods Appl Mech Eng 200:3583–3600

    Article  MathSciNet  MATH  Google Scholar 

  29. Lafontaine NM, Rossi R, Cervera M, Chiumenti M (2015) Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics. Comput Mech 55:1–17

    Article  MathSciNet  MATH  Google Scholar 

  30. Babuska I (1971) Error-bounds for finite element method. Numer Math 16(4):322–333

    Article  MathSciNet  MATH  Google Scholar 

  31. Brezzi F, Fortin M, Marini D (1991) Mixed finite element methods. Springer, Berlin

    Book  MATH  Google Scholar 

  32. Codina R (2000) Stabilization of incompresssibility and convection through orthogonal sub-scales in finite elements methods. Comput Methods Appl Mech Eng 190:1579–1599

    Article  MathSciNet  MATH  Google Scholar 

  33. Codina R (2008) Analysis of a stabilized finite element approximation of the oseen equations using orthogonal subscales. Appl Numer Math 58(3):264–283

    Article  MathSciNet  MATH  Google Scholar 

  34. Clough RW, Penzien J (1976) Dynamics of structures. Earthq Eng Struct Dyn

  35. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  36. de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and practice. Wiley, New York

    Book  Google Scholar 

  37. Bigoni D, Hueckel T (1991) Uniqueness and localization—I. Associative and non-associative elastoplasticity. Int J Solids Struct 28(2):197–213

    Article  MathSciNet  MATH  Google Scholar 

  38. Borja RI (2000) A finite element model for strain localization analysis of strongly discontinuous fields based on standard galerkin approximation. Comput Methods Appl Mech Eng 190(11–12):1529–1549

    Article  MATH  Google Scholar 

  39. Chambon R, Crochepeyre S, Desrues J (2000) Localization criteria for non-linear constitutive equations of geomaterials. Mech Cohesive Frict Mater 5(1):61–82

    Article  Google Scholar 

  40. Iordache M, Willam K (1998) Localized failure analysis in elastoplastic cosserat continua. Comput Methods Appl Mech Eng 151(3–4):559–586. Containing papers presented at the symposium on advances in computational mechanics

  41. Leroy Y, Ortiz M (1990) Finite element analysis of transient strain localization phenomena in frictional solids. Int J Numer Anal Methods Geomech 14(2):93–124

    Article  MATH  Google Scholar 

  42. Ottosen NS, Runesson K (1991) Properties of discontinuous bifurcation solutions in elasto-plasticity. Int J Solids Struct 27(4):401–421

    Article  MathSciNet  MATH  Google Scholar 

  43. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Article  Google Scholar 

  44. Runesson K, Saabye Ottosen N, Dunja P (1991) Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain. Int J Plast 7(1–2):99–121

    Article  MATH  Google Scholar 

  45. Steinmann P, Willam K (1994) Finite element analysis of elastoplastic discontinuities. J Eng Mech 120(11):2428–2442

    Article  Google Scholar 

  46. Cervera M, Wu J-Y (2015) On the conformity of strong, regularized, embedded and smeared discontinuity approaches for the modeling of localized failure in solids. Int J Solids Struct 71:19–38

    Article  Google Scholar 

  47. Wu J-Y, Cervera M (2015) On the equivalence between traction- and stress-based approaches for the modeling of localized failure in solids. J Mech Phys Solids 82:137–163

    Article  MathSciNet  Google Scholar 

  48. Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E (2013) Migration of a generic multi-physics framework to hpc environments. Comput Fluids 80:301–309

    Article  MATH  Google Scholar 

  49. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297

    Article  MATH  Google Scholar 

  50. GiD (2009) The personal pre and post processor. http://gid.cimne.upc.es

Download references

Acknowledgments

Financial support from the Spanish Ministry of Economy and Competitiveness under the project EACY—Enhanced accuracy computational and experimental framework for strain localization and failure mechanisms, ref. MAT2013-48624-C2-1-P, the Spanish Ministry of Foreign Affairs and Cooperation under the MAEC-AECID grants and the the European Commission under project NUMEXAS—Numerical Methods and Tools for Key Exascale Computing Challenges in Engineering and Applied Sciences, ref. FP7-ICT 611636, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cervera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervera, M., Lafontaine, N., Rossi, R. et al. Explicit mixed strain–displacement finite elements for compressible and quasi-incompressible elasticity and plasticity. Comput Mech 58, 511–532 (2016). https://doi.org/10.1007/s00466-016-1305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1305-z

Keywords

Navigation