Skip to main content
Log in

A novel FEM by scaling the gradient of strains with factor α (αFEM)

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a novel finite element method of quadrilateral elements by scaling the gradient of strains and Jacobian matrices with a scaling factor α (αFEM). We first prove that the solution of the αFEM is continuous for αϵ[0, 1] and bounded from both below and above, and hence is convergent. A general procedure of the αFEM has been proposed to obtain the exact or best possible solution for a given problem, in which an exact-α approach is devised for overestimation problems and a zero-α approach is suggested for underestimation problems. Using the proposed αFEM approaches, much more stable and accurate solutions can be obtained compared to that of standard FEM. The theoretical analyses and intensive numerical studies also demonstrate that the αFEM effectively overcomes the following well-known drawbacks of the standard FEM: (1) Overestimation of stiffness matrix when the full Gauss integration is used; (2) Instability problem known as hour-glass locking (presence of hour-glass modes or spurious zero-energy modes) when the reduced integration is used; (3) Volumetric locking in nearly incompressible problems when the bulk modulus becomes infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19: 1–8

    Article  MATH  Google Scholar 

  2. Arnold DN (1990) Mixed finite element methods for elliptic problems. Comput Methods Appl Mech Eng 82: 281–300

    Article  MATH  Google Scholar 

  3. Bathe KJ (1996) Finite element procedures. Prentice Hall, Masetchuset

    Google Scholar 

  4. Belytschko T, Tsay CS, Liu WK (1981) A stabilization matrix for the bilinear Mindlin plate element. Comput Methods Appl Mech Eng 29: 313–327

    Article  MATH  MathSciNet  Google Scholar 

  5. Belytschko T, Bachrach W (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54: 279–301

    Article  MATH  MathSciNet  Google Scholar 

  6. Belytschko T, Ong JSJ (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43: 251–276

    Article  MATH  Google Scholar 

  7. Belytschko T, Tsay CS (1983) A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int J Numer Methods Eng 19: 405–419

    Article  MATH  Google Scholar 

  8. Brezzi F, Fortin M (1991) Mixed and Hybrid finite element methods. Springer, New York

    MATH  Google Scholar 

  9. Cen S, Chen XM, Fu XR (2007) Quadrilateral membrane element family formulated by the quadrilateral area coordinate method. Comput Methods Appl Mech Eng 196: 4337–4353

    Article  Google Scholar 

  10. Chen XM, Cen S, Long YQ, Yao ZH (2004) Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Comput Struct 82(1): 35–54

    Article  Google Scholar 

  11. Chen XM, Cen S, Fu XR, Long YQ (2007) A new quadrilateral area coordinate method (QACM-II) for developing quadrilateral finite element models. Int J Numer Methods Eng 73: 1911–1941

    Article  Google Scholar 

  12. Cook R (1974) Improved two–dimensional finite element. J Struct Div ASCE 100(ST6): 1851–1863

    Google Scholar 

  13. Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Methods Eng 17: 679–706

    Article  MATH  Google Scholar 

  14. Fredriksson M, Ottosen NS (2004) Fast and accurate 4-node quadrilateral. Int J Numer Methods Eng 61: 1809–1834

    Article  MATH  Google Scholar 

  15. Gruttmann F, Wagner W (2004) A stabilized one-point integrated quadrilateral Reissner–Mindlin plate element. Int J Numer Methods Eng 61: 2273–2295

    Article  MATH  Google Scholar 

  16. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15: 1413–1418

    Article  MATH  Google Scholar 

  17. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  18. Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, New York

    MATH  Google Scholar 

  19. Kelly DW (1980) Bounds on discretization error by special reduced integration of the Lagrange family of finite elements. Int J Numer Methods Eng 15: 1489–1506

    Article  MATH  Google Scholar 

  20. Kosloff D, Frazier GA (1978) Treatment of hourglass patterns in low order finite element codes. Int J Numer Anal Methods Geomech 2: 57–72

    Article  Google Scholar 

  21. Korelc J, Wriggers P (1997) Improved enhanced strain four-node element with Taylor expansion of the shape functions. Int J Numer Methods Eng 40: 407–421

    Article  MathSciNet  Google Scholar 

  22. Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39: 859–877

    Article  MATH  Google Scholar 

  23. Liu GR, Quek SS (2003) The finite element method: a practical course. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

  24. Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71: 902–930

    Article  MathSciNet  Google Scholar 

  25. Liu WK, Belytschko T (1984) Efficient linear and nonlinear heat conduction with a quadrilateral element. Int J Numer Methods Eng 20: 931–948

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu WK, Hu YK, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Methods Eng 37: 3263–3289

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu WK, Ong JSJ, Uras RA (1985) Finite element stabilization matrices—a unification approach. Comp Meths Appl Mech Eng 53: 13–46

    Article  MATH  MathSciNet  Google Scholar 

  28. Malkus DS, Hughes TJR (1978) Mixed finite element methods—reduced and selective integration techniques: a unification of concepts. Comp Meth Appl Mech Eng 15: 63–81

    Article  MATH  Google Scholar 

  29. Mijuca D, Berković M (1998) On the efficiency of the primal-mixed finite element scheme. In: Advances in computational structured mechanics. Civil-Comp Press, UK, pp 61–69

  30. Nguyen TT, Liu GR, Dai KY, Lam KY (2007) Selective smoothed finite element method. Tsinghua Sci Technol 12(5): 497–508

    Article  MathSciNet  Google Scholar 

  31. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20: 1685–1695

    Article  MATH  Google Scholar 

  32. Pian THH, Wu CC (2006) Hybrid and incompatible finite element methods. CRC Press, Boca Raton

    MATH  Google Scholar 

  33. Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48: 79–109

    Article  MATH  Google Scholar 

  34. Rong TY, Lu AQ (2001) Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics: Part I. Volumetric locking. Comput Methods Appl Mech Eng 191: 407–422

    Article  MATH  MathSciNet  Google Scholar 

  35. Rong TY, Lu AQ (2003) Generalized mixed variational principles and solutions for ill-conditioned problems in computational mechanics: Part II. Shear locking. Comput Methods Appl Mech Eng 192: 4981–5000

    Article  MATH  MathSciNet  Google Scholar 

  36. Sandhu RS, Singh KJ (1978) Reduced integration for improved accuracy of finite element approximations. Comp Meths Appl Mech Eng 14: 23–37

    Article  MATH  MathSciNet  Google Scholar 

  37. Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech 53: 51–54

    Article  MATH  MathSciNet  Google Scholar 

  38. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10: 1211–1219

    Article  MATH  Google Scholar 

  39. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  40. Xie X (2005) An accurate hybrid macro-element with linear displacements. Commun Numer Methods Eng 21: 1–12

    Article  MATH  Google Scholar 

  41. Xie X, Zhou T (2004) Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals. Int J Numer Methods Eng 59: 293–313

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhou T, Nie Y (2001) A combined hybrid approach to finite element schemes of high performance. Int J Numer Methods Eng 51: 181–202

    Article  MATH  MathSciNet  Google Scholar 

  43. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

  44. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3: 275–290

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nguyen-Thoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G.R., Nguyen-Thoi, T. & Lam, K.Y. A novel FEM by scaling the gradient of strains with factor α (αFEM). Comput Mech 43, 369–391 (2009). https://doi.org/10.1007/s00466-008-0311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0311-1

Keywords

Navigation