Skip to main content

Advertisement

Log in

Potential use of bio functionalized nanoparticles to attenuate triple negative breast cancer (MDA-MB-231 cells)

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study showed that bio-functional silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were synthesized in aqueous extracts of Gymnema sylvestre leaves and tested for toxicity assessment against triple-negative breast cancer cells (TNBC). Biofunctional nanoparticle (NPs) samples were characterized using UV–Vis spectroscopy, FT-IR, XRD, SEM, and TEM. The results showed that the phytofabrication of AgNPs resulted in a dark brown, UV–vis maximum absorbance peak at 413 nm. The AgNPs were crystalline and spherical, with sizes ranging from 20 to 60 nm, as confirmed by the XRD pattern and TEM images. Another phytofabrication of ZnONPs exhibited a white precipitate corresponding to a UV–Vis maximum absorption peak at 377 nm and a fine micro flower morphology with a particle-sized tribution between 100 and 200 nm. In addition, FT-IR spectra showed that bioorganic compounds are associated with NPs that respond to reduced Ag+ ions and AgNPs tabilizers. Invitro cytotoxicity studies revealed the potent anti-cancer effects of phytofabricated AgNPs and ZnONPs on TNBC cells. Furthermore, the AO/EB double staining assay results proved that apoptotic cells are distinguished by greenish-yellow fluorescence of the cell nuclei with IC50 concentrations of 44 ± 0.8 µg/mL for AgNPs and 26.2 ± 0.5 µg/mL for ZnONPs, respectively. Based on our results, we expect that the anticancer function of the biofunctional NPs is due to the apoptotic activation of TNBC cells by increased ROS. Therefore, the presented study demonstrated that biofunctional AgNPs and ZnONPs have excellent prospects for the anti-cancer activity that can be used in pharmaceutical and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article.

References

  1. Maron SB, Alpert L, Kwak HA, Lomnicki S, Chase L, Xu D, O’Day E, Nagy RJ, Lanman RB, Cecchi F, Hembrough T (2018) Targeted therapies for targeted populations: Anti-EGFR Treatment for EGFR-amplified gastroesophageal adenocarcinoma anti-EGFR Therapy for EGFR-amplified gastroesophageal cancer. Cancer Discov 8(6):696–713. https://doi.org/10.1158/2159-8290.CD-17-1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Almansour N (2022) Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci 25:32. https://doi.org/10.3389/fmolb.2022.836417

    Article  CAS  Google Scholar 

  3. Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N (2015) Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 172(17):4228–4237. https://doi.org/10.1111/bph.13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Medina MA, Oza G, Sharma A, Arriaga LG, Hernández Hernández JM, Rotello VM, Ramirez JT (2020) Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health 17(6):2078. https://doi.org/10.3390/ijerph17062078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nguyen DTC, Van Tran T, Nguyen TTT, Nguyen DH, Alhassan M, Lee T (2022) New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: a review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.159278

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ettadili FE, Aghris S, Laghrib F, Farahi A, Saqrane S, Bakasse M, Lahrich S, El Mhammedi MA (2022) Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. J Mol Str 1248:131538. https://doi.org/10.1016/j.molstruc.2021.131538

    Article  CAS  Google Scholar 

  7. Mohammadzadeh V, Barani M, Amiri MS, Yazdi MET, Hassanisaadi M, Rahdar A, Varma RS (2022) Applications of plant-based nanoparticles in nanomedicine: a review. Sustain Chem Pharm 25:100606. https://doi.org/10.1016/j.scp.2022.100606

    Article  CAS  Google Scholar 

  8. Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K (2022) Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. J Nanostr Chem. https://doi.org/10.1007/s40097-022-00504-2

    Article  Google Scholar 

  9. Dhandapani P, Devanesan S, Narenkumar J, Maruthamuthu S, AlSalhi MS, Rajasekar A, Ahamed A (2020) Novel synthesis of ZnO by Ice-cube method for photo-inactivation of E. coli. Saudi J Biol Sci 27(4):1130–1138. https://doi.org/10.1016/j.sjbs.2020.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manju V, Dhandapani P, Neelavannan MG, Maruthamuthu S, Berchmans S, Palaniappan A (2015) Tunable release of clavam from clavam stabilized gold nanoparticles—Design, characterization and antimicrobial study. Mater Sci Eng C 49:500–508. https://doi.org/10.1016/j.msec.2015.01.047

    Article  CAS  Google Scholar 

  11. Dhandapani P, Santhoshkumar M, Narenkumar J, AlSalhi MS, Kumar PA, Devanesan S, Kokilaramani S, Rajasekar A (2022) Bio-approach: preparation of RGO-AgNPs on cotton fabric and interface with sweat environment for antibacterial activity. Bioprocess Biosyst Eng 45:1825–1837. https://doi.org/10.1007/s00449-022-02789-7

    Article  CAS  PubMed  Google Scholar 

  12. Gao Y, ArokiaVijayaAnand M, Ramachandran V, Karthikkumar V, Shalini V, Vijayalakshmi S, Ernest D (2019) Biofabrication of zinc oxide nanoparticles from Aspergillusniger, their antioxidant, antimicrobial and anticancer activity. J Clust Sci. https://doi.org/10.1007/s10876-019-01551-6volV)(0123456789,-().volV)

    Article  Google Scholar 

  13. Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G (2018) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environm Sci Pollut Res. https://doi.org/10.1007/s11356-017-9912-6

    Article  Google Scholar 

  14. Alshameri AW, Owais M (2022) Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: a review. OpenNano. https://doi.org/10.1016/j.onano.2022.100077

    Article  Google Scholar 

  15. Gebre SH (2022) Bio-inspired synthesis of metal and metal oxide nanoparticles: the key role of phytochemicals. J Clust Sci. https://doi.org/10.1007/s10876-022-02276-9

    Article  Google Scholar 

  16. Vinayagam R, Santhoshkumar M, Lee KE, David E, Kang SG (2021) Bioengineered gold nanoparticles using Cynodondactylon extract and its cytotoxicity and antibacterial activities. Bioprocess Biosyst Eng 44(6):1253–1262. https://doi.org/10.1007/s00449-021-02527-5

    Article  CAS  PubMed  Google Scholar 

  17. Faheem MM, Bhagat M, Sharma P, Anand R (2022) Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenialigulata (Whole plant). Inter J Pharm 619:121710. https://doi.org/10.1016/j.ijpharm.2022.121710

    Article  CAS  Google Scholar 

  18. Gomathi AC, Rajarathinam SX, Sadiq AM, Rajeshkumar S (2020) Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindusindica on MCF-7 human breast cancer cell line. J Drug Delivery Sci Technol 55:101376. https://doi.org/10.1016/j.jddst.2019.101376

    Article  CAS  Google Scholar 

  19. Rauf MA, Oves M, Rehman FU, Khan AR, Husain N (2019) Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed Pharmacother 116:108983. https://doi.org/10.1016/j.biopha.2019.108983

    Article  CAS  Google Scholar 

  20. Khan MI, Bouyahya A, Hachlafi NE, Menyiy NE, Akram M, Sultana S, Zengin G, Ponomareva L, Shariati MA, Ojo OA (2022) Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations. Environ Sci Pollut Res 29(17):24411–24444. https://doi.org/10.1007/s11356-021-17795-7

    Article  CAS  Google Scholar 

  21. Yaseen G, Shahid S (2020) Comprehensive review on phytopharmacological potential of Gymnemasylvestre. Asian J Pharm Technol 10(3):217–220. https://doi.org/10.5958/2231-5713.2020.00036.7

    Article  Google Scholar 

  22. Alam O, Naaz S, Sharma V, Manaithiya A, Khan J, Alam A (2022) Recent developments made in the assessment of the antidiabetic potential of gymnema species-From 2016 to 2020. J Ethnopharmacol 286:114908. https://doi.org/10.1016/j.jep.2021.114908

    Article  CAS  PubMed  Google Scholar 

  23. Khan F, Sarker MMR, Ming LC, Mohamed IN, Zhao C, Sheikh BY, Tsong HF, Rashid MA (2019) Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnemasylvestre. Front Pharmacol 10:1223. https://doi.org/10.3389/fphar.2019.01223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao Y, Xie Y, Liu L, Xiao A, Li Y, Zhang C, Fang X, Zhou Y (2017) Influence of phytochemicals on the biocompatibility of inorganic nanoparticles: a state-of-the-art review. Phytochem Rev 16:555–563. https://doi.org/10.1007/s11101-017-9490-8

    Article  CAS  Google Scholar 

  25. Suriyakala G, Sathiyaraj S, Gandhi AD, Vadakkan K, Rao UM, Babujanarthanam R (2021) PlumeriapudicaJacq. Flower extract-mediated silver nanoparticles: characterization and evaluation of biomedical applications. Inorg Chem Commun 126:108470. https://doi.org/10.1016/j.inoche.2021.108470

    Article  CAS  Google Scholar 

  26. Dhandapani P, Prakash AA, AlSalhi MS, Maruthamuthu S, Devanesan S, Rajasekar A (2020) Ureolytic bacteria mediated synthesis of hairy ZnO nanostructure as photocatalyst for decolorization of dyes. Mater Chem Phys 243:122619. https://doi.org/10.1016/j.matchemphys.2020.122619

    Article  CAS  Google Scholar 

  27. Sathiyaraj S, Suriyakala G, Gandhi AD, Saranya S, Santhoshkumar M, Kavitha P, Babujanarthanam R (2020) Green biosynthesis of silver nanoparticles using vallaraichooranam and their potential biomedical applications. J Inorg Organomet Polym Mater 11:4709–4719. https://doi.org/10.1007/s10904-020-01683-7

    Article  CAS  Google Scholar 

  28. Mariadoss AVA, Ramachandran V, Shalini V, Agilan B, Franklin JH, Sanjay K, Ernest D (2019) Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malusdomestica and its cytotoxic effect on (MCF-7) cell line. Microb Pathog 135:103609. https://doi.org/10.1016/j.micpath.2019.103609

    Article  CAS  PubMed  Google Scholar 

  29. Dhandapani P, Siddarth AS, Kamalasekaran S, Maruthamuthu S, Rajagopal G (2014) Bio-approach: ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohyd Polym 103:448–455. https://doi.org/10.1016/j.carbpol.2013.12.074

    Article  CAS  Google Scholar 

  30. Hassan ME, Hassan RR, Diab KA, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA (2021) Nanoencapsulation of thyme essential oil: a new avenue to enhance its protective role against oxidative stress and cytotoxicity of zinc oxide nanoparticles in rats. Environ Sci Pollut Res 37:52046–52063. https://doi.org/10.1007/s11356-021-14427-y

    Article  CAS  Google Scholar 

  31. Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S (2021) Nanotechnology in bladder cancer: diagnosis and treatment. Cancers 9:2214. https://doi.org/10.3390/cancers13092214

    Article  CAS  Google Scholar 

  32. Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F (2020) Oxidative stress in cardiovascular diseases. Antioxidants 9:864. https://doi.org/10.3390/antiox9090864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van der Pol A, van Gilst WH, Voors AA (2019) van der Meer P. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Failure 4:425–435. https://doi.org/10.1002/ejhf.1320

    Article  Google Scholar 

  34. Bisht G, Rayamajhi S (2016) ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine. 3:9. https://doi.org/10.5772/63437

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bisht G, Rayamajhi S, Kc B, Paudel SN, Karna D, Shrestha BG (2016) Synthesis, characterization, and study of in vitro cytotoxicity of ZnO-Fe3O4 magnetic composite nanoparticles in human breast cancer cell line (MDA-MB-231) and mouse fibroblast (NIH 3T3). Nanoscale Res Lett. https://doi.org/10.1186/s11671-016-1734-9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alam F, Shafique Z, Amjad ST, Bin Asad MH (2019) Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytotherapy Res 1:41–54. https://doi.org/10.1002/ptr.6211

    Article  CAS  Google Scholar 

  37. Tiwari P, Mishra BN, Sangwan NS (2014) Phytochemical and pharmacological properties of Gymnemasylvestre: an important medicinal plant. BioMed Res Inter. https://doi.org/10.1155/2014/830285

    Article  Google Scholar 

  38. Chaudhari KR, Ukawala M, Manjappa AS, Kumar A, Mundada PK, Mishra AK, Mathur R, Mönkkönen J, Murthy RS (2012) Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res 29:53–68. https://doi.org/10.1007/s11095-011-0510-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge King Saud University, Riyadh, Saudi Arabia for funding this research through Researchers Supporting Project No: RSP2023R11. Department of Science and Technology, SERB-National Post Doctoral Fellowship (N-PDF), Government of India (PDF/2022/001253). Author also thank Indian Council Medical Research (ICMR), New Delhi, India for the award of senior research fellowship (SRF) File No.45/52/2020/NANO/BMS.

Funding

All sources of funding for the research reported should be declared. The role of the funding body in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript should be declared.

Author information

Authors and Affiliations

Authors

Contributions

MS: Conceptualization, Methodology, Original draft preparation, DP: Data curation, Original draft preparation, JN: Reviewing, VR: Software, KM: Validation, AA: Validation,. ED: Supervision Writing – review & editing.

Corresponding authors

Correspondence to Jayaraman Narenkumar or Ernest David.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

"Not Applicable".

Consent to participate

"Not Applicable".

Consent to publish

"Not Applicable".

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 319 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhoshkumar, M., Perumal, D., Narenkumar, J. et al. Potential use of bio functionalized nanoparticles to attenuate triple negative breast cancer (MDA-MB-231 cells). Bioprocess Biosyst Eng 46, 803–811 (2023). https://doi.org/10.1007/s00449-023-02858-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02858-5

Keywords

Navigation