Skip to main content

Advertisement

Log in

Opsonization, Biodistribution, Cellular Uptake and Apoptosis Study of PEGylated PBCA Nanoparticle as Potential Drug Delivery Carrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 13 August 2011

ABSTRACT

Purpose

For nanocarrier-based targeted delivery systems, preventing phagocytosis for prolong circulation half life is a crucial task. PEGylated poly(n-butylcyano acrylate) (PBCA) NP has proven a promising approach for drug delivery, but an easy and reliable method of PEGylation of PBCA has faced a major bottleneck.

Methods

PEGylated PBCA NPs containing docetaxel (DTX) by modified anionic polymerization reaction in aqueous acidic media containing amine functional PEG were made as an single step PEGylation method. In vitro colloidal stability studies using salt aggregation method and antiopsonization property of prepared NPs using mouse macrophage cell line RAW264 were performed. In vitro performance of anticancer activity of prepared formulations was checked on MCF7 cell line. NPs were radiolabeled with 99mTc and intravenously administered to study blood clearance and biodistribution in mice model.

Results

These formulations very effectively prevented phagocytosis and found excellent carrier for drug delivery purpose. In vivo studies display long circulation half life of PBCA-PEG20 NP in comparison to other formulations tested.

Conclusions

The PEGylated PBCA formulation can work as a novel tool for drug delivery which can prevent RES uptake and prolong circulation half life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

DTX:

docetaxel

EPR:

enhanced permeation and retention

NP:

nanoparticle

PBCA:

poly(n-butylcyano acrylate)

PEG:

polyethylene glycol

PMN:

polymorphonuclear cells

RES:

reticuloendothelial system

REFERENCES

  1. Nijhara R, Balakrishnan K. Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties. Nanomedicine. 2006;2(2):127–36.

    Article  PubMed  CAS  Google Scholar 

  2. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1(3):193–212.

    Article  PubMed  CAS  Google Scholar 

  3. Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today. 2010;15(19–20):842–50.

    Article  PubMed  CAS  Google Scholar 

  4. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    PubMed  CAS  Google Scholar 

  5. Mosqueira VCF, Legrand P, Gref R, Heurtault B, Appel M, Barratt G. Interactions between a macrophage cell line (J774A1) and surface-modified poly (D, L-lactide) nanocapsules bearing poly(ethylene glycol). J Drug Targeting. 1999;7(1):65–78.

    Article  CAS  Google Scholar 

  6. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–27.

    Article  CAS  Google Scholar 

  7. Thiele L, Diederichs JE, Reszka R, Merkle HP, Walter E. Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials. 2003;24(8):1409–18.

    Article  PubMed  CAS  Google Scholar 

  8. Lacava LM, Lacava ZG, Da Silva MF, Silva O, Chaves SB, Azevedo RB, et al. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophys J. 2001;80(5):2483–6.

    Article  PubMed  CAS  Google Scholar 

  9. Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T. Synthesis and characterization of soluble iron oxide−dendrimer composites. Chem Mater. 2001;13(6):2201–9.

    Article  CAS  Google Scholar 

  10. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang MQ. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small. 2006;2(6):785–92.

    Article  PubMed  CAS  Google Scholar 

  11. Quaglia F, Ostacolo L, De Rosa G, La Rotonda MI, Ammendola M, Nese G, et al. Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers. Int J Pharm. 2006;324(1):56–66.

    Article  PubMed  CAS  Google Scholar 

  12. Zahr AS, Davis CA, Pishko MV. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir. 2006;22(19):8178–85.

    Article  PubMed  CAS  Google Scholar 

  13. Liu L, Bai Y, Song C, Zhu D, Song L, Zhang H, et al. The impact of arginine-modified chitosan–DNA nanoparticles on the function of macrophages. J Nanopart Res. 2010;12(5):1637–44.

    Article  CAS  Google Scholar 

  14. Pereverzeva E, Treschalin I, Bodyagin D, Maksimenko O, Kreuter J, Gelperina S. Intravenous tolerance of a nanoparticle-based formulation of doxorubicin in healthy rats. Toxicol Lett. 2008;178(1):9–19.

    Article  PubMed  CAS  Google Scholar 

  15. Gelperina SE, Khalansky AS, Skidan IN, Smirnova ZS, Bobruskin AI, Severin SE, et al. Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett. 2002;126(2):131–41.

    Article  PubMed  CAS  Google Scholar 

  16. Pereverzeva E, Treschalin I, Bodyagin D, Maksimenko O, Langer K, Dreis S, et al. Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio- and testicular toxicity. Int J Pharm. 2007;337(1–2):346–56.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou Q, Sun X, Zeng L, Liu J, Zhang Z. A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine. 2009;5(4):419–23.

    Article  PubMed  CAS  Google Scholar 

  18. Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Controlled Release. 2003;93(2):151–60.

    Article  CAS  Google Scholar 

  19. Couvreur P, Kante B, Roland M, Guiot P, Baudhuin P, Speiser P. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979;31(5):331–2.

    Article  PubMed  CAS  Google Scholar 

  20. Peracchia MT, Vauthier C, Puisieux F, Couvreur P. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res Part A. 1997;34(3):317–26.

    Article  CAS  Google Scholar 

  21. Peracchia MT, Vauthier C, Passirani C, Couvreur P, Labarre D. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 1997;61(7):749–61.

    Article  PubMed  CAS  Google Scholar 

  22. De Juan BS, Briesen HV, Gelperina SE, Kreuter J. Cytotoxicity of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles in rat glioma cell lines using different assays. J Drug Targeting. 2006;14(9):614–22.

    Article  Google Scholar 

  23. Mitra A, Lin S. Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems. J Pharm Pharmacol. 2003;55(7):895–902.

    Article  PubMed  CAS  Google Scholar 

  24. Eckelman WC. Radiolabeling with technetium-99m to study high-capacity and low-capacity biochemical systems. Eur J Nucl Med. 1995;22(3):249–63.

    Article  PubMed  CAS  Google Scholar 

  25. Babbar AK, Singh AK, Goel HC, Chauhan UPS, Sharma RK. Evaluation of 99mTc labeled Photosan-3, a heamatoporphyrin derivative, as a potential radiopharmaceutical for tumor scintigraphy. Nucl Med Biol. 2000;27(4):419–26.

    Article  PubMed  CAS  Google Scholar 

  26. Saha GB. Methods of radiolabeling. In: Saha GB, editor. Physics and radiobiology of nuclear medicine. New York: Springer; 1993. p. 100–6.

    Google Scholar 

  27. Saha GB. Fundamentals of nuclear pharmacy. 5th ed. New York: Springer; 2005.

    Google Scholar 

  28. Capala J, Barth RF, Bailey MQ, Fenstermaker RA, Marek MJ, Rhodes BA. Radiolabeling of epidermal growth factor with 99m Tc and in vivo localization following intracerebral injection into normal and glioma bearing rats. Bioconjugate Chem. 1997;8(3):289–95.

    Article  CAS  Google Scholar 

  29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  PubMed  CAS  Google Scholar 

  30. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192(4):571–9.

    Article  PubMed  CAS  Google Scholar 

  31. Morse DL, Gray H, Payne CM, Gillies RJ. Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol Cancer Ther. 2005;4(10):1495–504.

    Article  PubMed  CAS  Google Scholar 

  32. Behan N, Birkinshaw C, Clarke N. Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials. 2001;22(11):1335–44.

    Article  PubMed  CAS  Google Scholar 

  33. Ryan B, McCann G. Novel sub-ceiling temperature rapid depolymerisation- repolymerisation reactions of cyanoacrylate polymers. Macromol Rapid Commun. 1996;17(4):217–27.

    Article  CAS  Google Scholar 

  34. Limouzin C, Caviggia A, Ganachaud F, Hemery P. Anionic polymerization of n-butyl cyanoacrylate in emulsion and miniemulsion. Macromolecules. 2003;36(3):667–74.

    Article  CAS  Google Scholar 

  35. Huanga C, Chen C, Lee Y. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticles via miniemulsion. Int J Pharm. 2007;338(1–2):267–75.

    Article  Google Scholar 

  36. Pratten MK, Lioyd JB. Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta. 1986;881(3):307–13.

    Article  PubMed  CAS  Google Scholar 

  37. Moghimi SM, Patel HM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system: the concept of tissue specificity. Adv Drug Delivery Rev. 1998;32(1–2):45–60.

    Article  CAS  Google Scholar 

  38. Blunk T, Hochstrasser DF, Sanchez JC, Muller BW, Muller RH. Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis. 1993;14(1):1382–7.

    Article  PubMed  CAS  Google Scholar 

  39. Muller M, Voros J, Csucs G, Walter E, Danuser G, Merkle HP, et al. Surface modification of PLGA microspheres. J Biomed Mater Res. 2003;66A(1):55–61.

    Article  Google Scholar 

  40. Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials. 2007;28(35):5344–57.

    Article  PubMed  CAS  Google Scholar 

  41. Mühlfeld C, Rothen-Rutishauser B, Vanhecke D, Blank F, Gehr P, Ochs M. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol. 2007;4:11.

    Article  PubMed  Google Scholar 

  42. Rothen-Rutishauser B, Mühlfeld C, Blank F, Musso C, Gehr P. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol. 2007;4:9.

    Article  PubMed  Google Scholar 

  43. Liu LX, Song CN, Song LP, Zhang HL, Dong X, Leng XG. Effects of alkylated-chitosan–DNA nanoparticles on the function of macrophages. J Mater Sci Mater Med. 2009;20(4):943–8.

    Article  PubMed  Google Scholar 

  44. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Delivery Rev. 1995;16(2–3):215–33.

    Article  CAS  Google Scholar 

  45. Gref R, Quellec P, Marchand M, Dellacherie E, Lück M, Harnisch S, et al. “Stealth” corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf, B. 2000;18(3–4):301–13.

    Article  CAS  Google Scholar 

  46. Arulsudar N, Subramanian N, Mishra P, Sharma RK, Murthy RSR. Preparation, characterization and biodistribution of 99mTc-labeled liposome encapsulated cyclosporine. J Drug Targeting. 2003;11(3):187–96.

    CAS  Google Scholar 

  47. Subramanian N, Arulsudar N, Chuttani K, Mishra P, Sharma RK, Murthy RSR. Radiolabeling, biodistribution and tumor imaging of stealth liposomes containing methotrexate. J Alasbimn. 2003;6(22):Article 6.

  48. Arulsudar N, Subramanian N, Mishra P, Chuttani K, Sharma RK, Murthy RSR. Preparation, characterization and biodistribution of Technetium-99m-labeled leuprolide acetate-loaded liposomes in Ehrlich Ascites tumor bearing mice. AAPS PharmSci. 2004;6:E5.

    Article  PubMed  CAS  Google Scholar 

  49. Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RSR. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS J. 2004;6(3):55–64.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This research was supported by National Doctoral Fellowship by All India Council of Technical Education (AICTE) (1-10/RID/NDF-PG/(39)2008-2009), India. The authors are also thankful to Tong Shen Enterprise, Taiwan, for providing a free gift sample of n-butyl cyanoacrylate monomer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayasa S. Ramchandra Murthy.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-011-0565-8

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S-1

Fourier transform spectroscopy (FTIR) reports of PBCA-PEG, PBCA and PEG polymer. (JPEG 50 kb)

High resolution image (TIFF 1404 kb)

Figure S-2

H1 Nuclear magnetic resonance (NMR) reports of PBCA-PEG polymer of PBCA-PEG20 NP. (JPEG 29 kb)

High resolution image (TIFF 4229 kb)

Figure S-3

Gel Permeation Chromatography (GPC) reports of PBCA NP and PBCA-PEG20 NP. (JPEG 37 kb)

High resolution image (TIFF 5239 kb)

Table SI

% Release of 6-coumarin from PBCA NP and PEGylated PBCA NP using PBS (pH 7.4) with 0.5% tween after 6 h. (DOCX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhari, K.R., Ukawala, M., Manjappa, A.S. et al. Opsonization, Biodistribution, Cellular Uptake and Apoptosis Study of PEGylated PBCA Nanoparticle as Potential Drug Delivery Carrier. Pharm Res 29, 53–68 (2012). https://doi.org/10.1007/s11095-011-0510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0510-x

KEY WORDS

Navigation