Skip to main content
Log in

Discovering Decolorization Potential of Triphenylmethane Dyes by Actinobacteria from Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigates the decolorization potential of actinobacteria from soil towards toxic triphenylmethane (TPM) dyes, i.e., malachite green (MG), methyl violet (MV), crystal violet (CV), and cotton blue (CB). The actinobacterial isolates were first isolated from fresh soil samples, plated onto actinomycetes isolation agar (AIA), and both live and dead cells were prepared to evaluate their decolorization efficiency (DE). Isolates with positive decolorization activities were identified via partial sequencing of the 16S rRNA region. They were revealed as species of Nocardiopsis (N. alba), Streptomyces (S. puniceus, S. bacillaris, S. albolongus, S. acidiscabies, S. albulus, S. pratensis, S. luridiscabiei, S. rubiginosus, S. albidochromogenes), Rhodococcus (R. sovatensis), and Kitasatospora (K. albolonga). Results indicated that all 12 actinobacterial strains (live cells and dead cells) were able to decolorize TPM dyes, although with varying degree of effectiveness. Isolate N. alba (live cells) achieved the highest DE, with 97.0, 95.1, 95.8, and 83.8% (day 14) for MG, MV, CV, and CB, respectively. This was followed by live cells of S. bacillaris with 94.7, 95.1, 90.5, and 63.9% of DE for the same dyes. Live cells appeared to be more effective in decolorizing TPM dyes, suggesting the possible biosorption and biodegradation of dyes. It is concluded that soil actinobacteria tested in this study have the potential for removal of TPM dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon request.

References

  • Ali, S. A. M., & Akthar, N. (2014). A study on bacterial decolorization of crystal violet dye by Clostridium perfringens Pseudomonas aeruginosa and Proteus vulgaris. Research. Article. Biological. Science, 4, 89–96.

    CAS  Google Scholar 

  • An, S.-Y., Min, S.-K., Cha, I.-H., Choi, Y.-L., Cho, Y.-S., Kim, C.-H., et al. (2002). Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnology Letters, 24(12), 1037–1040.

    CAS  Google Scholar 

  • Anandan, R., Dharumadurai, D., & Manogaran, G. P. (2016). An introduction to actinobacteria. In: Dhanasekaran Y., Jiang Y. (Eds.), Actinobacteria-Basics and Biotechnological Applications: Intechopen. pp. 3–37. https://doi.org/10.5772/62329.

  • Araujo-Melo, R. d. O., de Oliveira, T. H. B., de Oliveira, C. V. J., de Araújo, J. M., de Sena, K. X., & Coelho, L. C. B. B. (2019). Actinobacteria: a renewable source of bioactive molecules with medical, industrial and pharmacological importance. In: Sosa F.C. (Ed.), Advances and Trends in Biotechnology and Genetics Vol. 1, (pp. 63–79) Book Publisher International. https://doi.org/10.9734/bpi/atbg/v1.

  • Arocha-Garza, H. F., Canales-Del Castillo, R., Eguiarte, L. E., Souza, V., & De la Torre-Zavala, S. (2017). High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ, 5, e3247.

    Google Scholar 

  • Boudechiche, N., Mokaddem, H., Sadaoui, Z., & Trari, M. (2016). Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): characterization, equilibrium, kinetic and thermodynamic studies. International Journal of Industrial Chemistry, 7(2), 167–180.

    CAS  Google Scholar 

  • Brenner, D. J., Krieg, N. R., Staley, J. T., & Garrity, G. M. (2005). In: Garrity G.M. (Ed.), Bergey's manual® of systematic bacteriology: volume two: The Proteobacteria, Part A Introductory Essays. Springer. pp. 1–304.

  • Briceño, G., Pizzul, L., & Diez, M. C. (2013). Biodegradation of pesticides by actinobacteria and their possible application in biobed systems. In: Amoroso M.J., Benimeli C.S., Cuozzo S. (Eds.), Actinobacteria: application in bioremediation and production of industrial enzymes. Taylor & Francis, Boca Raton, FL, p. 286.

  • Buntić, A., Pavlović, M., Šiler-Marinković, S., & Dimitrijević-Branković, S. (2016). Biological treatment of colored wastewater by Streptomyces fulvissimus CKS 7. Water Science and Technology, 73(9), 2231–2236.

    Google Scholar 

  • Casas, N., Parella, T., Vicent, T., Caminal, G., & Sarrà, M. (2009). Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere, 75(10), 1344–1349.

    CAS  Google Scholar 

  • Chen, B.-Y. (2002). Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochemistry, 38(3), 437–446.

    CAS  Google Scholar 

  • Chen, S. H., & Ting, A. S. Y. (2015). Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. International Biodeterioration & Biodegradation, 103, 1–7.

    CAS  Google Scholar 

  • Chen, S. H., Cheow, Y. L., Ng, S. L., & Ting, A. S. Y. (2019). Biodegradation of triphenylmethane dyes by non-white rot fungus Penicillium simplicissimum: enzymatic and toxicity studies. International Journal of Environmental Research, 13(2), 273–282.

    CAS  Google Scholar 

  • Chittal, V., Gracias, M., Anu, A., Saha, P., & Rao, K. B. (2019). Biodecolorization and biodegradation of Azo Dye Reactive Orange-16 by marine Nocardiopsis sp. Iranian Journal of Biotechnology, 17(3), e1551.

    Google Scholar 

  • de Almeida, E. J. R., & Corso, C. R. (2016). Acid blue 161: Decolorization and toxicity analysis after microbiological treatment. Water, Air, & Soil Pollution, 227(12), 468.

    Google Scholar 

  • Eizuka, T., Ito, A., & Chida, T. (2003). Degradation of ipconazole by microorganisms isolated from paddy soil. Journal of Pesticide Science, 28(2), 200–207.

    CAS  Google Scholar 

  • El-Sersy, N. A., Abou-Elela, G. M., Hassan, S. W., & Abd-Elnaby, H. (2011). Bioremediation of acid fast red dye by Streptomyces globosus under static and shake conditions. African Journal of Biotechnology, 10(17), 3467–3474.

    CAS  Google Scholar 

  • Gill, P., Arora, D., & Chander, M. (2002). Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. Journal of Industrial Microbiology and Biotechnology, 28(4), 201–203.

    CAS  Google Scholar 

  • Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M. E., & Suzuki, K.-i., Ludwig, W., et al. (2012). Bergey's manual® of systematic bacteriology: volume five the Actinobacteria. Part A: Springer.

    Google Scholar 

  • Hema, T., Getha, K., Tan, G., Sahira, H. L., Syamil, A. M., & Fairuz, M. N. (2014). Actinobacterial isolates from tin tailings and forest soil for bioremediation of heavy metals. Journal of Tropical Forest Science, 26, 153–162.

    Google Scholar 

  • Jasińska, A., Paraszkiewicz, K., Słaba, M., & Długoński, J. (2015). Microbial decolorization of triphenylmethane dyes. In Singh S. (Ed.), Microbial Degradation of Synthetic Dyes in Wastewaters, Springer. pp. 169–186.

  • Jiang, J., He, X., & Cane, D. E. (2007). Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coelicolor enzyme. Nature Chemical Biology, 3(11), 711.

    CAS  Google Scholar 

  • Kaushik, P., & Malik, A. (2015). Mycoremediation of synthetic dyes: an insight into the mechanism, process optimization and reactor design. In: Singh S (Ed.), Microbial Degradation of Synthetic dyes in Wastewaters, Springer. pp. 1–25.

  • Khalid, A., & Mahmood, S. (2015). The biodegradation of azo dyes by actinobacteria. In: Singh S. (Ed.), Microbial Degradation of Synthetic Dyes in Wastewaters, Springer. pp. 293–314.

  • Kuhad, R., Sood, N., Tripathi, K., Singh, A., & Ward, O. (2004). Developments in microbial methods for the treatment of dye effluents. Advances in Applied Microbiology, 56, 185–213.

    CAS  Google Scholar 

  • Li, G., Peng, L., Ding, Z., Liu, Y., Gu, Z., Zhang, L., et al. (2014). Decolorization and biodegradation of triphenylmethane dyes by a novel Rhodococcus qingshengii JB301 isolated from sawdust. Annals of Microbiology, 64(4), 1575–1586.

    CAS  Google Scholar 

  • Li, Q., Chen, X., Jiang, Y., & Jiang, C. (2016). Morphological identification of actinobacteria. InL Dhanasekaran D, Jiang Y (Eds.), Actinobacteria-Basics and Biotechnological Applications. Rijeka, Croatia: InTech Open. pp. 59–81.

  • Mahmood, R., Sharif, F., Ali, S., & Hayyat, M. U. (2015). Enhancing the decolorizing and degradation ability of bacterial consortium isolated from textile effluent affected area and its application on seed germination. The Scientific World Journal, 2015, 628195.

    Google Scholar 

  • Malisorn, K., Embaen, S., Sribun, A., Saeng-in, P., Phongsopitanun, W., & Tanasupawat, S. (2020). Identification and antimicrobial activities of Streptomyces, Micromonospora, and Kitasatospora strains from rhizosphere soils. Journal of Applied Pharmaceutical Science, 10(02), 123–128.

    CAS  Google Scholar 

  • Mane, U., Gurav, P., Deshmukh, A., & Govindwar, S. (2008). Degradation of textile dye reactive navy–blue Rx (reactive blue–59) by an isolated Actinomycete Streptomyces krainskii SUK–5. Malaysian Journal of Microbiology, 4(2), 1–5.

    Google Scholar 

  • Maniyam, M. N., Sjahrir, F., & Hari, M. (2018). Decolourization of methylene blue by Rhodococcus strain UCC 0003. International Journal of Environmental Science and Development, 9(11), 322–326.

    CAS  Google Scholar 

  • Maniyam, M. N., Ibrahim, A. L., & Cass, A. E. (2020). Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. Environmental Technology, 41(1), 71–85.

    CAS  Google Scholar 

  • Marcharchand, S., & Ting, A. S. Y. (2017). Trichoderma asperellum cultured in reduced concentrations of synthetic medium retained dye decolourization efficacy. Journal of Environmental Management, 203, 542–549.

    CAS  Google Scholar 

  • Margesin, R., Moertelmaier, C., & Mair, J. (2013). Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. International Biodeterioration & Biodegradation, 84, 185–191.

    CAS  Google Scholar 

  • Moopantakath, J., & Kumavath, R. (2018). Bio-augmentation of actinobacteria and their role in dye decolorization. In Prasad R., Gill SS, Tuleja N. (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier. pp. 297–304.

  • Nacèra, Y., & Aicha, B. (2006). Equilibrium and kinetic modelling of methylene blue biosorption by pretreated dead streptomyces rimosus: effect of temperature. Chemical Engineering Journal, 119(2–3), 121–125.

    Google Scholar 

  • Nouioui, I., Carro, L., García-López, M., Meier-Kolthoff, J. P., Woyke, T., Kyrpides, N. C., et al. (2018). Genome-based taxonomic classification of the phylum Actinobacteria. Frontiers in Microbiology, 9, 2007.

    Google Scholar 

  • Oplatowska, M., Donnelly, R. F., Majithiya, R. J., Kennedy, D. G., & Elliott, C. T. (2011). The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye brilliant green from green paper towels. Food and Chemical Toxicology, 49(8), 1870–1876.

    CAS  Google Scholar 

  • Pant, D., Singh, A., Satyawali, Y., & Gupta, R. (2007). Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, Phanerochaete chrysosporium. Journal of Environmental Biology, 29(1), 79.

    Google Scholar 

  • Parshetti, G., Parshetti, S., Telke, A., Kalyani, D., Doong, R., & Govindwar, S. P. (2011). Biodegradation of crystal violet by Agrobacterium radiobacter. Journal of Environmental Sciences, 23(8), 1384–1393.

    CAS  Google Scholar 

  • Patil, P. B., Zeng, Y., Coursey, T., Houston, P., Miller, I., & Chen, S. (2010). Isolation and characterization of a Nocardiopsis sp. from honeybee guts. FEMS Microbiology Letters, 312(2), 110–118.

    CAS  Google Scholar 

  • Priyaragini, S., Sathishkumar, S., & Bhaskararao, K. (2013). Biosynthesis of silver nanoparticles using actinobacteria and evaluating its antimicrobial and cytotoxicity activity. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2), 709–712.

    CAS  Google Scholar 

  • Przystaś, W., Zabłocka-Godlewska, E., & Grabińska-Sota, E. (2012). Biological removal of azo and triphenylmethane dyes and toxicity of process by-products. Water, Air, & Soil Pollution, 223(4), 1581–1592.

    Google Scholar 

  • Przystaś, W., Zabłocka-Godlewska, E., & Grabińska-Sota, E. (2018). Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Brazilian Journal of Microbiology, 49(2), 285–295.

    Google Scholar 

  • Qi, J., Schlömann, M., & Tischler, D. (2016). Biochemical characterization of an azoreductase from Rhodococcus opacus 1CP possessing methyl red degradation ability. Journal of Molecular Catalysis B: Enzymatic, 130, 9–17.

    CAS  Google Scholar 

  • Raja, M. M. M., Raja, A., Salique, S. M., & Gajalakshmi, P. (2016). Studies on effect of marine actinomycetes on amido black (azo dye) decolorization. Journal of Chemical and Pharmaceutical Research, 8(8), 640–644.

    CAS  Google Scholar 

  • Saranraj, P., & Sivasakthivelan, P. (2014). Prevalence of bacterial isolates in textile dye effluent and analysis of its dye degrading efficiency. Middle-East Journal of Scientific Research, 21(5), 721–725.

    Google Scholar 

  • Seyis, I., & Subasioglu, T. (2008). Comparison of live and dead biomass of fungi on decolorization of methyl orange. African Journal of Biotechnology, 7(12), 2212–2216.

    CAS  Google Scholar 

  • Shah, M. (2014). Efficacy of Rhodococcus rhodochrous in microbial degradation of toluidine dye. Journal of Petroleum & Environmental Biotechnology, 5(4), 187.

    Google Scholar 

  • Shah, M. P., Patel, K. A., Nair, S. S., & Darji, A. (2013). Bioremoval of azo dye Reactive Red by Bacillus spp. ETL-1982. Journal of Bioremediation and Biodegradation, 4(3):1000186.

  • ShanmugaPriya, M. (2016). Decolorization of azodyes by marine actinomycetes. Advance Research Journal of Life Sciences, 2(2), 1–5.

    Google Scholar 

  • Sharma, M., Dangi, P., & Choudhary, M. (2014). Actinomycetes: source, identification, and their applications. International Journal of Current Microbiology and Applied Sciences, 3(2), 801–832.

    CAS  Google Scholar 

  • Shedbalkar, U., Dhanve, R., & Jadhav, J. (2008). Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials, 157(2–3), 472–479.

    CAS  Google Scholar 

  • Shekhar, S. K., Godheja, J., Modi, D., & Peter, J. K. (2014). Growth potential assessment of Actinomycetes isolated from petroleum contaminated soil. Journal of Bioremediation & Biodegredation, 5(7), 1.

    Google Scholar 

  • Shrivastava, P., Kumar, R., Yandigeri, M. S., Malviya, N., & Arora, D. K. (2015). Isolation and characterization of Streptomycetes with plant growth promoting potential from mangrove ecosystem. Polish Journal of Microbiology, 64(4), 339–349.

    Google Scholar 

  • Singh, K., Kumar, P., & Srivastava, R. (2017). An overview of textile dyes and their removal techniques: Indian perspective. Pollution Research, 36(4), 790–797.

    Google Scholar 

  • Stach, J. E., Maldonado, L. A., Ward, A. C., Goodfellow, M., & Bull, A. T. (2003). New primers for the class Actinobacteria: application to marine and terrestrial environments. Environmental Microbiology, 5(10), 828–841.

    CAS  Google Scholar 

  • Stammati, A., Nebbia, C., De Angelis, I., Albo, A. G., Carletti, M., Rebecchi, C., et al. (2005). Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicology In Vitro, 19(7), 853–858.

    CAS  Google Scholar 

  • Sugumar, S., & Thangam, E. (2012). Biodegradation and decolorization of reactive orange 16 by Nocardiopsis alba soil isolate. Journal of Bioremediation & Biodegradation, 3(6), 155.

    CAS  Google Scholar 

  • Ting, A. S. Y., Lee, M. V. J., Chow, Y. Y., & Cheong, S. L. (2016). Novel exploration of endophytic Diaporthe sp. for the biosorption and biodegradation of triphenylmethane dyes. Water, Air, & Soil Pollution, 227(4), 109.

    Google Scholar 

  • Velkova, Z. Y., Kirova, G. K., Stoytcheva, M. S., & Gochev, V. (2018). Biosorption of Congo Red and methylene blue by pretreated waste Streptomyces fradiae biomass–equilibrium, kinetic and thermodynamic studies. Journal of the Serbian Chemical Society, 83(1), 107–120.

    CAS  Google Scholar 

  • Vijayakumar, R., & Malathi, R. (2014). Isolation, characterization and antibacterial activity of actinobacteria from dye polluted soils of Tirupur. Medicine and Biology, 16(1), 43–48.

    Google Scholar 

  • Vijayaraghavan, J., Basha, S. S., & Jegan, J. (2013). A review on efficacious methods to decolorize reactive azo dye. Journal of Urban and Environmental Engineering, 7(1), 30–47.

    Google Scholar 

  • Wolińska, A., Górniak, D., Zielenkiewicz, U., Kuźniar, A., Izak, D., Banach, A., et al. (2019). Actinobacteria structure in autogenic, hydrogenic and lithogenic cultivated and non-cultivated soils: a culture-independent approach. Agronomy, 9(10), 598.

    Google Scholar 

  • Yun, B.-R., Malik, A., & Kim, S. B. (2020). Genome based characterization of Kitasatospora sp. MMS16-BH015, a multiple heavy metal resistant soil actinobacterium with high antimicrobial potential. Gene, 733, 144379.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Monash University Malaysia for the research funding and facilities.

Funding

The research was funded by Monash University Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Su Yien Ting.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors agree that this paper to be published by Journal of Water, Air & Soil Pollution.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adenan, N.H., Lim, Y.Y. & Ting, A.S.Y. Discovering Decolorization Potential of Triphenylmethane Dyes by Actinobacteria from Soil. Water Air Soil Pollut 231, 560 (2020). https://doi.org/10.1007/s11270-020-04928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04928-w

Keywords

Navigation