Skip to main content
Log in

Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Magnetic double-shell hybrid microspheres (Fe3O4@SiO2@p(NIPAM-co-GMA)) have been developed as a promising supported substrate for the immobilization of cellulase. Since the surface of the magnetic microspheres not only contains an epoxy group from GMA (glycidyl methacrylate) that can covalently bind to the enzyme, but also has an intelligent temperature response property from NIPAM (N-isopropylacrylamide), the cellulase can be covalently bonded to the magnetic microspheres and have a temperature-sensitive capability. The immobilized cellulase has the recovery ability of cellulase activity after a high-temperature inactivation. The average amount and activity of immobilized enzymes, respectively, was 233 mg g−1, 57.4 U mg−1 under the optimized conditions. The experimental results show that the immobilized cellulase has a wider catalytic temperature range, better temperature and storage stability. The residual activity still remained about 65.6% of the initial activity after the sixth catalysis run, which indicated that the immobilized enzyme had high reproducibility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  PubMed  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  3. Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7

  4. Khoshnevisan K, Vakhshiteh F, Barkhi M, Baharifar H, Poor-Akbar E, Zari N, Stamatis H, Bordbar AK, Khoshnevisan K, Vakhshiteh F (2017) Immobilization of cellulase enzyme onto magnetic nanoparticles: applications and recent advances. 442, pp 66–73

  5. Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Harzevili FD, Zeynizadeh B (2017) Dithiocarbamate to modify magnetic graphene oxide nanocomposite (Fe3O4-GO): a new strategy for covalent enzyme (lipase) immobilization to fabrication a new nanobiocatalyst for enzymatic hydrolysis of PNPD. Int J Biol Macromol 101:696–702

    Article  CAS  PubMed  Google Scholar 

  6. Khoshnevisan K, Barkhi M, Ghasemzadeh A, Tahami HV, Pourmand S (2016) Fabrication of coated/uncoated magnetic nanoparticles to determine their surface properties. Mater Manuf Processes 31:1206–1215

    Article  CAS  Google Scholar 

  7. Lee YC, Dutta S, Wu KCW (2014) Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. Chemsuschem 7:3181–3181

    Article  CAS  Google Scholar 

  8. Das R, Mishra H, Srivastava A, Kayastha A (2017) Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: A gateway to boost enzyme application. Chem Eng J 328:215–227

    Article  CAS  Google Scholar 

  9. Cho EJ, Jung S, Kim HJ, Lee YG, Nam KC, Lee HJ, Bae HJ (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48:886–888

    Article  CAS  Google Scholar 

  10. Kamat RK, Ma WF, Yang YK, Zhang YT, Wang CC, Kumar CV, Lin Y (2013) Adsorption and hydrolytic activity of the polycatalytic cellulase nanocomplex on cellulose. ACS Appl Mater Interfaces 5:8486–8494

    Article  CAS  PubMed  Google Scholar 

  11. Pan MR, Sun YF, Zheng J, Yang WL (2013) Boronic acid-functionalized core–shell–shell magnetic composite microspheres for the selective enrichment of glycoprotein. ACS Appl Mater Interfaces 5:8351–8358

    Article  CAS  PubMed  Google Scholar 

  12. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991

    Article  CAS  PubMed  Google Scholar 

  13. Khoshnevisan K, Barkhi M, Zare D, Davoodi D, Tabatabaei M (2012) Preparation and characterization of CTAB-coated Fe3O4 nanoparticles. Synth React Inorg M 42:644–648

    Article  CAS  Google Scholar 

  14. Bayramoglu G, Doz T, Ozalp VC, Arica MY (2017) Improvement stability and performance of invertase via immobilization on to silanized and polymer brush grafted magnetic nanoparticles. Food Chem 221:1442–1450

    Article  CAS  PubMed  Google Scholar 

  15. Ince A, Bayramoglu G, Karagoz B, Altintas B, Bicak N, Arica MY (2012) A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem Eng J 189:404–412

    Article  CAS  Google Scholar 

  16. Huang F, Wang JZ, Qu AT, Shen LL, Liu JJ, Liu JF, Zhang ZK, An YL, Shi LQ (2014) Maintenance of amyloid beta peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew Chem Int Ed Engl 53:8985–8990

    Article  CAS  PubMed  Google Scholar 

  17. Ganguli S, Yoshimoto K, Tomita S, Sakuma H, Matsuoka T, Shiraki K, Nagasaki Y (2009) Regulation of lysozyme activity based on thermotolerant protein/smart polymer complex formation. J Am Chem Soc 131:6549–6553

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Liu Y, Zhang ZK, Huang F, Tao Q, Ma RJ, An YL, Shi LQ (2013) Temperature-responsive mixed-shell polymeric micelles for the refolding of thermally denatured proteins. Chem Eur J 19:7437–7442

    Article  CAS  PubMed  Google Scholar 

  19. Ma WF, Xu SA, Li JM, Guo J, Lin Y, Wang CC (2011) Hydrophilic dual-responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and pH sensitivity via distillation–precipitation polymerization. J Polym Sci Part A: Polym Chem 49:2725–2733

    Article  CAS  Google Scholar 

  20. Bourgeatlami E, Lang J (1999) Encapsulation of inorganic particles by dispersion polymerization in polar media. J Colloid Interface Sci 210:281

    Article  CAS  Google Scholar 

  21. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  22. Ma W, Zhang Y, Li L, Zhang Y, Yu M, Guo J, Lu H, Wang C (2013) Ti4+-immobilized magnetic composite microspheres for highly selective enrichment of phosphopeptides. Adv Funct Mater 23:107–115

    Article  CAS  Google Scholar 

  23. Bai F, Xinlin Yang A, Huang W (2004) Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation–precipitation polymerization. Macromolecules 37:3641–3649

    Article  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Khoshnevisan K, Bordbar AK, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171:669–673

    Article  CAS  Google Scholar 

  26. IUPAC (2009) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Google Scholar 

  27. Pardo AG, Forchiassin F (1999) Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. Rev Argent Microbiol 31:31–35

    CAS  PubMed  Google Scholar 

  28. Gokhale AA, Lu J, Lee I (2013) Immobilization of cellulase on magnetoresponsive graphene nano-supports. J Mol Catal B-Enzym 90:76–86

    Article  CAS  Google Scholar 

  29. Bayramoglu G, Senkal BF, Arica MY (2013) Preparation of clay-poly(glycidyl methacrylate) composite support for immobilization of cellulase. Appl Clay Sci 85:88–95

    Article  CAS  Google Scholar 

  30. Ungurean M, Paul C, Peter F (2013) Cellulase immobilized by sol–gel entrapment for efficient hydrolysis of cellulose. Bioproc Biosyst Eng 36:1327–1338

    Article  CAS  Google Scholar 

  31. Liu X, Liu Y, Zhang Z, Huang F, Tao Q, Ma R, An Y, Shi L (2013) Temperature-responsive mixed-shell polymeric micelles for the refolding of thermally denatured proteins. Chemistry 19:7437–7442

    Article  CAS  PubMed  Google Scholar 

  32. Zang LM, Qiu JH, Wu XL, Zhang WJ, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53:3448–3454

    Article  CAS  Google Scholar 

  33. Yan Q, Yuan JY, Yuan WZ, Zhou M, Yin YW, Pan CY (2008) Copolymer logical switches adjusted through core-shell micelles: from temperature response to fluorescence response. Chem Commun 6188–6190

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 21676124, 31470434 and 21576124), China Postdoctoral Science Foundation funded project (no. 2017M610308), and Jiangsu Postdoctoral Science Foundation funded project (no. 1701107B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Rong, J., Wang, Y. et al. Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility. Bioprocess Biosyst Eng 41, 1051–1060 (2018). https://doi.org/10.1007/s00449-018-1934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1934-z

Keywords

Navigation