Skip to main content
Log in

Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian–Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii–Zuber, and Schiller–Naumann. The gas holdups in the riser and the downcomer were well predicted using E–L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E–E and E–L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02–0.04 m s−1 experiencing an average shear of 23.52–44.56 s−1 which is far below the critical limit of cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A d :

Cross-sectional area of downcomer (m2)

A r :

Cross-sectional area of the riser (m2)

C cd :

Interphase momentum transfer coefficient for the interphase drag force

C D :

Drag coefficient

C L :

Lift coefficient

C wl :

Wall lubrication coefficient

D :

Diameter of the reactor (m)

d b :

Bubble diameter (m)

Eo :

Eotvos number

F B :

Buoyancy force acting on the particle (N)

F D :

Drag force acting on particle (N)

F P :

Pressure gradient force (N)

F VM :

Virtual (or added) mass force (N)

g :

Gravity vector (m s−2)

k :

Turbulent energy (m2 s−2)

M :

Interfacial momentum transfer term between gas–liquid phases

Mo :

Morton number

m b :

Mass of single bubble (kg)

P :

Pressure (Pa)

P k :

Turbulence production due to viscous forces (kg m−1s−3)

P kb :

Turbulence production due to buoyancy effect (kg m−1s−3)

P εb :

Turbulence dissipation due to buoyancy effect (kg m−1s−3)

Re :

Reynold’s Number

Re ω :

Vorticity Reynolds’s Number

t :

Time (s)

U :

Averaged liquid-phase velocity (m s−1)

U b :

Bubble velocity (m s−1)

U c :

Continuous phase velocity (m s−1)

U p :

Particle velocity (m s−1)

U t :

Bubble terminal velocity (m s−1)

V :

Velocity (m s−1)

V g :

Superficial gas velocity (m s−1)

V ld :

Liquid circulation velocity (m s−1)

b:

Bubble phase

c:

Continuous phase

p:

Particle (solid) phase

eff:

Effective

g:

Gas phase

l:

Liquid phase

lam:

Laminar

t:

Turbulent

OV:

Overall

r, R:

Riser

d, D:

Downcomer

µ :

Viscosity of liquid phase (kg m−1s−1)

ρ :

Density of phase (kg m−3)

ε :

Turbulent energy dissipation (m2 s−3)

σ :

Surface tension (N m−1)

σ ρ :

Turbulent Schmidt number

α:

Gas holdup

Ω :

Rotation vector

References

  1. Merchuk JC (2003) Airlift bioreactors: review of recent advances. Can J Chem Eng 81:324–337

    Article  CAS  Google Scholar 

  2. Chisti MY, Moo-Young M (1987) Airlift reactors: characteristics, applications and design considerations. Chem Eng Commun 60:195–242

    Article  CAS  Google Scholar 

  3. Miron AS, Camacho FG, Gomez AC, Grima EM, Chisti Y (2000) Bubble column and airlift photobioreactor for algal culture. AIChE J 46:1872–1887

    Article  CAS  Google Scholar 

  4. Krichnavaruk S, Loataweesup W, Powtongsook S, Pavasant P (2005) Optimal growth conditions and the cultivation of Chaetoceros calcitrans in airlift photobioreactor. Chem Eng J 105:91–98

    Article  CAS  Google Scholar 

  5. Pangarkar VG (2015) Design of multiphase reactors. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  6. Pawar SB (2016) Process engineering aspects of vertical column photobioreactors for mass production of microalgae. ChemBioEng Rev 3:101–115

    Article  CAS  Google Scholar 

  7. Chen F, Chen H, Gong X (1997) Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour Technol 62:19–24

    Article  CAS  Google Scholar 

  8. Wongsuchoto P, Charinpanitkul T, Pavasant P (2003) Bubble size distribution and gas–liquid mass transfer in airlift contactors. Chem Eng J 92:81–90

    Article  CAS  Google Scholar 

  9. Luo HP, Al-Dahhan MH (2010) Local gas holdup in a draft tube airlift bioreactor. Chem Eng Sci 65:4503–4510

    Article  CAS  Google Scholar 

  10. Luo H, Al-Dahhan MH (2012) Airlift column photobioreactors for Porphyridium sp. culturing: part I: effects of hydrodynamics and reactor geometry. Biotechnol Bioeng 109:932–941

    Article  CAS  Google Scholar 

  11. Klein J, Vicente AA, Teixeira JA (2003) Hydrodynamics of a three-phase airlift reactor with an enlarged separator—application to high cell density systems. Can J Chem Eng 81:433–443

    Article  CAS  Google Scholar 

  12. Darmana D, Deen NG, Kuipers JAM (2005) Detailed modeling of hydrodynamics, mass transfer and chemical reaction in a bubble column using a discrete bubble model. Chem Eng Sci 60:3383–3404

    Article  CAS  Google Scholar 

  13. Joshi JB (2001) Computational flow modeling and design of bubble column reactors. Chem Eng Sci 56:5893–5933

    Article  CAS  Google Scholar 

  14. Pourtousi M, Sahu JN, Ganesan P (2014) Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column. Chem Eng Process 75:38–47

    Article  CAS  Google Scholar 

  15. Simonnet M, Gentric C, Olmos E, Midoux N (2008) CFD simulation of the flow field in a bubble column reactor: importance of the drag force formulation to describe regime transitions. Chem Eng Process 47:1726–1737

    Article  CAS  Google Scholar 

  16. Mohajerani M, Mehrvar M, Ein-Mozaffari F (2012) CFD analysis of two-phase turbulent flow in internal airlift reactors. Can J Chem Eng 90:1611–1630

    CAS  Google Scholar 

  17. Rodriguez GY, Valverde-Ramirez M, Mendes CE, Bettega R, Badino AC (2015) Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: experimental data and CFD simulation. Bioprocess Biosyst Eng 38:2063–2075

    Article  CAS  Google Scholar 

  18. McClure DD, Kavangh JM, Fletcher DF, Barton GW (2014) Development of a CFD model of bubble column bioreactor: part two—comparison of experimental data and CFD predictions. Chem Eng Technol 37:131–140

    Article  CAS  Google Scholar 

  19. ANSYS Inc. Release 15 (2014) Particle Transport Modeling, CFX, Ansys Documentation, Canonsburg, USA

  20. Amooghin AE, Jafari S, Sanaeepur H, Kargari A (2015) Computational fluid dynamics simulation of bubble coalescence and breakup in an internal airlift reactor: analysis of effects of a draft tube on hydrodynamics and mass transfer. Appl Math Model 39:1616–1642

    Article  Google Scholar 

  21. Pawar SB (2017) CFD analysis of flow regimes in airlift reactor using Eulerian–Lagrangian approach. Can J Chem Eng 95:420–431

    Article  CAS  Google Scholar 

  22. Van Baten JM, Ellenberger J, Krishna R (2003) Using CFD to describe the hydrodynamics of internal air-lift reactors. Can J Chem Eng 81:660–668

    Article  Google Scholar 

  23. Simcik M, Mota A, Ruzicka MC, Vicente A, Teixeira J (2011) CFD simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor. Chem Eng Sci 66:3268–3279

    Article  CAS  Google Scholar 

  24. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, San Diego

    Google Scholar 

  25. Shang Z, Lou J, Li H (2015) CFD analysis of bubble column reactor under gas–oil–water–solid four-phase flows using Lagrangian algebraic slip mixture model. Int J Multiph Flow 73:142–154

    Article  CAS  Google Scholar 

  26. Azargoshasb H, Mousavi SM, Jamialahmadi O, Shojaosadati SA, Mousavi SB (2016) Experiments and a three-phase computational fluid dynamics (CFD) simulation coupled with population balance equations of a stirred tank bioreactor for high cell density cultivation. Can J Chem Eng 94:20–32

    Article  CAS  Google Scholar 

  27. Wongsuchoto P, Pavasant P (2004) Internal liquid circulation in annulus sparged internal loop airlift reactor. Chem Eng J 100:1–9

    Article  CAS  Google Scholar 

  28. Blazej M, Glover GMC, Generalis SC, Markos J (2004) Gas–liquid simulation of an airlift bubble column reactor. Chem Eng Process 43:137–144

    Article  CAS  Google Scholar 

  29. Ebrahimifakhar M, Mohsenzadeh E, Moradi S, Moraveji M, Salimi M (2011) CFD simulation of the hydrodynamics in an internal air-lift reactor with two different configurations. Front Chem Sci Eng 5:455–462

    Article  Google Scholar 

  30. Lestinsky P, Vecer M, Vayrynen P, Wichterle K (2015) The effect of the draft tube geometry on mixing in a reactor with an internal circulation loop—a CFD simulation. Chem Eng Process 94:29–34

    Article  CAS  Google Scholar 

  31. Luo H, Al-Dahhan MH (2011) Verification and validation of CFD simulation for local flow dynamics in a draft tube airlift bioreactor. Chem Eng Sci 66:907–923

    Article  CAS  Google Scholar 

  32. Rengel A, Zoughaib A, Dron D, Clodic D (2012) Hydrodynamic study of an internal airlift reactor for microalgae culture. Appl Microbiol Biotechnol 93:117–129

    Article  Google Scholar 

  33. Pfaffinger CE, Schone D, Trunz S, Lowe H, Botz-Weuster D (2016) Model based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Res 20:153–163

    Article  Google Scholar 

  34. Van Benthum WAJ, Van der Lans RGJM, Van Loosdrecht MCM, Heijnen JJ (1999) Bubble recirculation regimes in an internal-loop airlift reactor. Chem Eng Sci 54:3995–4006

    Article  Google Scholar 

  35. Miron AS, Sanchez A, Garcia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  CAS  Google Scholar 

  36. Contreras A, Garcia F, Molina E, Merchuk JC (1999) Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor. Enzyme Microb Technol 25:820–830

    Article  CAS  Google Scholar 

  37. Meng C, Huang J, Ye C, Cheng W, Chen J, Li Y (2015) Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments. Bioprocess Biosyst Eng 38:1347–1363

    Article  CAS  Google Scholar 

  38. Michels MHA, van der Goot AJ, Norsker NH, Wijffels RH (2010) Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng 33:921–927

    Article  CAS  Google Scholar 

  39. Xu Y, Luo L, Yuan J (2011) CFD simulations to portray the bubble distribution and the hydrodynamics in an annulus sparged air-lift bioreactor. Can J Chem Eng 89:360–368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the Department of Science and Technology, New Delhi for their financial support for this research work under the scheme of DST Inspire Faculty Award (IFA13-ENG63). The author is also very thankful to the Director, CSIR–NEERI Nagpur for providing enough infrastructure facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay B. Pawar.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1 s. Meshing of the geometry (for example: ALC3 and ALC5). (TIFF 1335 kb)

Fig. 2 s. Mesh independency results for ALC3 geometry, A) V g = 0.01 m s−1, B) V g = 0.03 m s−1. (TIFF 587 kb)

449_2017_1841_MOESM3_ESM.tif

Fig. 3 s. Effect of different virtual mass force coefficients on overall gas holdup, riser gas holdup, and liquid velocity in ALC2 geometry at V g = 0.02 and 0.04 m s−1. (TIFF 356 kb)

449_2017_1841_MOESM4_ESM.tif

Fig. 4 s. Effect of consideration of lift force (LF) and wall lubrication (WL) force on overall gas holdup, riser gas holdup and liquid velocity in ALC2 and ALC3 geometries at V g = 0.02 and 0.04 m s−1, respectively. (TIFF 275 kb)

449_2017_1841_MOESM5_ESM.tif

Fig. 5 s. Prediction of hydrodynamics parameters under three-phase simulations of ABR (ALC3 geometry) for superficial gas velocity of 0.04 m s−1 a) microalgae velocity profile; b) volumetric distribution of microalgae cells; c) path followed by algae cells shown by streamlines; d) microalgae shear rate profile; and e) air bubble velocity profile and distribution of air bubbles. (TIFF 4860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S.B. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate. Bioprocess Biosyst Eng 41, 31–45 (2018). https://doi.org/10.1007/s00449-017-1841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1841-8

Keywords

Navigation