Skip to main content
Log in

Hydrodynamic study of an internal airlift reactor for microalgae culture

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bakker W, van Can H, Tramper J, de Gooijer C (1993) Hydrodynamics and mixing in a multiple air-lift loop reactor. Biotechnol Bioeng 42:994–1001

    Article  CAS  Google Scholar 

  • Bello R (1981) A characterization study of airlift contactors for application to fermentations. Ph.D. thesis, University of Waterloo, Ontario, Canada

  • Blazej M, Kisa M, Markos J (2004) Scale influence on the hydrodynamics of an internal airlift loop airlift reactor. Chem Eng Process 43:1519–1527

    Article  CAS  Google Scholar 

  • Brindley C, García M, Acién F, Fernández J, García J, Molina E (2004) Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnol Bioeng 87:723–733

    Article  Google Scholar 

  • Chisti M (1989) Airlift bioreactors. Elsevier Science, London

    Google Scholar 

  • Chisti Y, Wenge F, Moo-Young M (1995) Relationship between riser and downcomer gas holdup in internal airlift reactors without gas–liquid separators. Chem Eng J 57:B7–B13

    CAS  Google Scholar 

  • Contreras A, García F, Molina E, Merchuk J (1998a) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng 60:317–325

    Article  CAS  Google Scholar 

  • Contreras A, Chisti Y, Molina E (1998b) A reassessment of relationship between riser and downcomer gas holdups in airlift reactors. Chem Eng Sci 53:4151–4158

    Article  CAS  Google Scholar 

  • Contreras A, Garcia F, Molina E, Merchuk J (1999) Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor. Enzyme Microb Technol 25:820–830

    Article  CAS  Google Scholar 

  • Converti A, Lodi A, Del Borghi A, Solisio C (2006) Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochem Eng J 32:13–18

    Article  CAS  Google Scholar 

  • Fadavi A, Chisti Y (2007) Gas holdup and mixing characteristics of a novel forced circulation loop reactor. Chem Eng J 131:105–111

    Article  CAS  Google Scholar 

  • Freitas C, Teixeira J (1998a) Hydrodynamic studies in an airlift reactor with an enlarged degassing zone. Bioprocess Eng 18:267–279

    Article  CAS  Google Scholar 

  • Freitas C, Teixeira J (1998b) Solid-phase distribution in an airlift reactor with an enlarged degassing zone. Biotechnol Tech 12:219–224

    Article  CAS  Google Scholar 

  • Freitas C, Fialova M, Zahradnik J, Teixeira J (1999) Hydrodynamic model for three-phase internal- and external-loop airlift reactors. Chem Eng Sci 54:5253–5258

    Article  CAS  Google Scholar 

  • Ganzeveld K, Chisti Y, Moo-Young M (1995) Hydrodynamic behaviour of animal cell microcarrier suspensions in split-cylinder airlift bioreactors. Bioprocess Eng 12:239–247

    Article  CAS  Google Scholar 

  • García J, Lavin A, Diaz M (2000) High liquid holdup airlift tower loop reactor: I. Riser hydrodynamic characteristics. J Chem Technol 75:369–377

    Google Scholar 

  • Giaveno A, Lavalle L, Chiacchiarini P, Donati E (2007) Microbial processing of metal sulfides. Springer, Dordrecht

    Google Scholar 

  • Heijnen J, Hols J, Van der Lans R, Van Leeuwen H, Mulder A, Weltevrede R (1997) A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem Eng Sci 52:2527–2540

    Article  CAS  Google Scholar 

  • Janssen M, Kuijpers T, Veldhoen B, Ternbach M, Tramper J, Mur L, Weijffels R (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light:dark cycles: 13–87 s. J Biotechnol 70:323–333

    Article  CAS  Google Scholar 

  • Janssen M., Tramper J., Mur L., Wijffels R. (2003) Enclosed Outdoor Photobioreactors: Light Regime, Photosynthetic Efficiency, Scale-Up, and Future Prospects. Biotechnol Bioeng, 81:193–210

  • Jin B, Lant P (2004) Flow regime, hydrodynamics, floc size distribution and sludge properties in activated sludge bubble column, air-lift and aerated stirred reactors. Chem Eng Sci 59:2379–2388

    Article  CAS  Google Scholar 

  • Levy S (1999) Two phase flow in complex systems. Wiley-Interscience, USA

    Google Scholar 

  • Livingston A, Zhang S (1993) Hydrodynamic behaviour of three-phase (gas–liquid–solid) airlift reactors. Chem Eng Sci 48:1641–1654

    Article  CAS  Google Scholar 

  • Lu W, Hwang S, Chang C (1994) Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles. Chem Eng Sci 50:1301–1310

    Google Scholar 

  • Luo H, Muthanna H (2008) Local characteristics of hydrodynamics in draft tube airlift bioreactor. Chem Eng Sci 63:3057–3068

    Article  CAS  Google Scholar 

  • Merchuk J, Berzin I (1995) Distribution of energy dissipation in airlift reactors. Chem Eng Sci 50:2225–2233

    Article  CAS  Google Scholar 

  • Merchuk J, Ronen M, Giris S, Shoshana A (1998) Light/dark cycles in the growth of the red microalga Porphyridium sp. Biotechnol Bioeng 59:705–713

    Article  CAS  Google Scholar 

  • Oncel S, Sukan V (2007) Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Artrospira platensis (Spirulina platensis). Bioresour Technol 99:4755–4760

    Article  Google Scholar 

  • Radmann E, Radmann C, Reinehr Costa J (2007) Optimization of the repeated batch cultivation of microalgae Spirulina platensis in open raceway ponds. Aquaculture 265:118–126

    Article  Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Sánchez Mirón A, Cerón M, García Camacho F, Molina E, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31:1015–1023

    Article  Google Scholar 

  • Siegel M, Merchuk JC, Schiigerl K, (1986) Gas recirculation in air-lift reactors. A.I.Ch.E.J. 32: 1585

    Google Scholar 

  • Van Benthum W, van der Lans R, van Loosdrecht M, Heijnen J (1999) Bubble recirculation regimes in an internal airlift loop reactor. Chem Eng Sci 54:3995–4006

    Article  Google Scholar 

  • Van Harmelen T, Oonk H (2006) Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. Report, International Network on Biofixation of CO2 and Greenhouse Gas Abatement, the Netherlands

  • Wallis G (1969) One-dimensional two phase flow. McGraw-Hill, New York

    Google Scholar 

  • Wongsuchoto P, Pavansant P (2004) Internal liquid circulation in annulus sparged internal loop airlift contactors. Chem Eng J 100:1–9

    Article  CAS  Google Scholar 

  • Zhang X, Baicheng Z, Yiping Z, Zhaoling C, Wei C, Fan O (2002) A simple and low-cost airlift photobioreactor for microalgal mass culture. Biotechnol Lett 24:1767–1771

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to the group “Nouvelles Stratégies Energétiques” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rengel, A., Zoughaib, A., Dron, D. et al. Hydrodynamic study of an internal airlift reactor for microalgae culture. Appl Microbiol Biotechnol 93, 117–129 (2012). https://doi.org/10.1007/s00253-011-3398-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3398-9

Keywords

Navigation