Skip to main content
Log in

Experimental and CFD-PBM Study of Oxygen Mass Transfer Coefficient in Different Impeller Configurations and Operational Conditions of a Two-Phase Partitioning Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard “k-ε” Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie’s penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arjunwadkar, S., Sarvanan, K., Kulkarni, P., & Pandit, A. (1998). Gas-liquid mass transfer in dual impeller bioreactor. Biochemical Engineering Journal, 1, 99–106.

    Article  CAS  Google Scholar 

  2. Azargoshasb, H., Mousavi, S., Amani, T., Jafari, A. and Nosrati, M. (2015) Three-phase CFD simulation coupled with population balance equations of anaerobic syntrophic acidogenesis and methanogenesis reactions in a continuous stirred bioreactor. Journal of Industrial and Engineering Chemistry.

  3. Buffo, A., Vanni, M., Marchisio, D., & Fox, R. O. (2013). Multivariate quadrature-based moments methods for turbulent polydisperse gas–liquid systems. International Journal of Multiphase Flow, 50, 41–57.

    Article  CAS  Google Scholar 

  4. Chung, T.-P., Tseng, H.-Y., & Juang, R.-S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry, 38, 1497–1507.

    Article  CAS  Google Scholar 

  5. Collins, L., & Daugulis, A. (1997). Characterization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol. Applied Microbiology and Biotechnology, 48, 18–22.

    Article  CAS  Google Scholar 

  6. Cruickshank, S. M., Daugulis, A. J., & McLellan, P. J. (2000). Dynamic modeling and optimal fed-batch feeding strategies for a two-phase partitioning bioreactor. Biotechnology and Bioengineering, 67, 224–233.

    Article  CAS  Google Scholar 

  7. Daugulis, A. J. (2001). Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. TRENDS in. Biotechnology, 19, 457–462.

    CAS  Google Scholar 

  8. Dumont, E., & Delmas, H. (2003). Mass transfer enhancement of gas absorption in oil-in-water systems: a review. Chemical Engineering and Processing: Process Intensification, 42, 419–438.

    Article  CAS  Google Scholar 

  9. Ferreira, A., Pereira, G., Teixeira, J., & Rocha, F. (2012). Statistical tool combined with image analysis to characterize hydrodynamics and mass transfer in a bubble column. Chemical Engineering Journal, 180, 216–228.

    Article  CAS  Google Scholar 

  10. Fluent, F. (2006) 6.3 user’s guide. Fluent Inc.

  11. Fox, R. O. (2007), in Multiphase reacting flows: modelling and simulation, Springer, pp. 1–40.

  12. Gogate, P. R., & Pandit, A. B. (1999). Survey of measurement techniques for gas–liquid mass transfer coefficient in bioreactors. Biochemical Engineering Journal, 4, 7–15.

    Article  CAS  Google Scholar 

  13. Gómez-Díaz, D., Gomes, N., Teixeira, J. A., & Belo, I. (2009). Oxygen mass transfer to emulsions in a bubble column contactor. Chemical Engineering Journal, 152, 354–360.

    Article  Google Scholar 

  14. Hamed, T. A., Bayraktar, E., Mehmetoğlu, Ü., & Mehmetoğlu, T. (2004). The biodegradation of benzene, toluene and phenol in a two-phase system. Biochemical Engineering Journal, 19, 137–146.

    Article  Google Scholar 

  15. Juang, R.-S., Kao, H.-C., & Tseng, K.-J. (2010). Kinetics of phenol removal from saline solutions by solvent extraction coupled with degradation in a two-phase partitioning bioreactor. Separation and Purification Technology, 71, 285–292.

    Article  CAS  Google Scholar 

  16. Juang, R.-S., Kao, H.-C., & Zhang, Z. (2012). A simplified dynamic model for the removal of toxic organics in a two-phase partitioning bioreactor. Separation and Purification Technology, 90, 213–220.

    Article  CAS  Google Scholar 

  17. Kerdouss, F., Bannari, A., & Proulx, P. (2006). CFD modeling of gas dispersion and bubble size in a double turbine stirred tank. Chemical Engineering Science, 61, 3313–3322.

    Article  CAS  Google Scholar 

  18. Kerdouss, F., Bannari, A., Proulx, P., Bannari, R., Skrga, M., & Labrecque, Y. (2008). Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Computers & Chemical Engineering, 32, 1943–1955.

    Article  CAS  Google Scholar 

  19. Laakkonen, M., Moilanen, P., Alopaeus, V., & Aittamaa, J. (2007). Modelling local gas–liquid mass transfer in agitated vessels. Chemical Engineering Research and Design, 85, 665–675.

    Article  CAS  Google Scholar 

  20. Lamont, J. C., & Scott, D. (1970). An eddy cell model of mass transfer into the surface of a turbulent liquid. AICHE Journal, 16, 513–519.

    Article  CAS  Google Scholar 

  21. Marchisio, D. L. and Fox, R. O. (2013) Computational models for polydisperse particulate and multiphase systems. ed. Cambridge University Press.

  22. Michelin, M., de Oliveira Mota, A. M., de Moraes, M. D. L. T., da Silva, D. P., Vicente, A. A., & Teixeira, J. A. (2013). Influence of volumetric oxygen transfer coefficient (k L a) on xylanases batch production by Aspergillus niger van tieghem in stirred tank and internal-loop airlift bioreactors. Biochemical Engineering Journal, 80, 19–26.

    Article  CAS  Google Scholar 

  23. Mohsenzadeh, E., Moraveji, M. K., & Davarnejad, R. (2012). Influence of acetaminophen on gas hold-up, liquid circulation velocity and mass transfer coefficient in a split-cylinder airlift bioreactor. Journal of Molecular Liquids, 173, 113–118.

    Article  CAS  Google Scholar 

  24. Petitti, M., Vanni, M., Marchisio, D. L., Buffo, A., & Podenzani, F. (2013). Simulation of coalescence, break-up and mass transfer in a gas–liquid stirred tank with CQMOM. Chemical Engineering Journal, 228, 1182–1194.

    Article  CAS  Google Scholar 

  25. Puthli, M. S., Rathod, V. K., & Pandit, A. B. (2005). Gas–liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor. Biochemical Engineering Journal, 23, 25–30.

    Article  CAS  Google Scholar 

  26. Ramezani, M., Kong, B., Gao, X., Olsen, M. G., & Vigil, R. D. (2015). Experimental measurement of oxygen mass transfer and bubble size distribution in an air–water multiphase Taylor–Couette vortex bioreactor. Chemical Engineering Journal, 279, 286–296.

    Article  CAS  Google Scholar 

  27. Scargiali, F., Busciglio, A., Grisafi, F., & Brucato, A. (2014). Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors: influence of impeller design. Biochemical Engineering Journal, 82, 41–47.

    Article  CAS  Google Scholar 

  28. Şeker, Ş., Beyenal, H., Salih, B., & Tanyolac, A. (1997). Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Applied Microbiology and Biotechnology, 47, 610–614.

    Article  Google Scholar 

  29. Ucun, H., Yildiz, E., & Nuhoglu, A. (2010). Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics study and pH variation. Bioresource Technology, 101, 2965–2971.

    Article  CAS  Google Scholar 

  30. Zilouei, H., Guieysse, B., & Mattiasson, B. (2008). Two-phase partitioning bioreactor for the biodegradation of high concentrations of pentachlorophenol using Sphingobium chlorophenolicum DSM 8671. Chemosphere, 72, 1788–1794.

    Article  CAS  Google Scholar 

  31. Zokaei-Kadijani, S., Safdari, J., Mousavian, M., & Rashidi, A. (2013). Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching. Annals of Nuclear Energy, 53, 280–287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Moradkhani.

Electronic supplementary material

ESM 1

(DOCX 5289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradkhani, H., Izadkhah, MS. & Anarjan, N. Experimental and CFD-PBM Study of Oxygen Mass Transfer Coefficient in Different Impeller Configurations and Operational Conditions of a Two-Phase Partitioning Bioreactor. Appl Biochem Biotechnol 181, 710–724 (2017). https://doi.org/10.1007/s12010-016-2243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2243-0

Keywords

Navigation