Skip to main content
Log in

Modelling the growth kinetics of Kocuria marina DAGII as a function of single and binary substrate during batch production of β-Cryptoxanthin

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present investigation, growth kinetics of Kocuria marina DAGII during batch production of β-Cryptoxanthin (β-CRX) was studied by considering the effect of glucose and maltose as a single and binary substrate. The importance of mixed substrate over single substrate has been emphasised in the present study. Different mathematical models namely, the Logistic model for cell growth, the Logistic mass balance equation for substrate consumption and the Luedeking–Piret model for β-CRX production were successfully implemented. Model-based analyses for the single substrate experiments suggested that the concentrations of glucose and maltose higher than 7.5 and 10.0 g/L, respectively, inhibited the growth and β-CRX production by K. marina DAGII. The Han and Levenspiel model and the Luong product inhibition model accurately described the cell growth in glucose and maltose substrate systems with a R 2 value of 0.9989 and 0.9998, respectively. The effect of glucose and maltose as binary substrate was further investigated. The binary substrate kinetics was well described using the sum-kinetics with interaction parameters model. The results of production kinetics revealed that the presence of binary substrate in the cultivation medium increased the biomass and β-CRX yield significantly. This study is a first time detailed investigation on kinetic behaviours of K. marina DAGII during β-CRX production. The parameters obtained in the study might be helpful for developing strategies for commercial production of β-CRX by K. marina DAGII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vachali P, Bhosale P, Bernstein PS (2012) Microbial carotenoids. Microb Carotenoids Fungi: Methods Protocols Methods Mol Biol 898:41–59

    Article  CAS  Google Scholar 

  2. Serrato JO, Jimenez HI, Alvarez EB, Martınez RR, Bolanos JLN (2006) Production of β-cryptoxanthin, a provitamin-A precursor, by Flavobacterium Lutescens. J Food Sci 71(6):E314–E319

    Article  Google Scholar 

  3. Fu H, Xie B, Fan G, Ma S, Zhu X, Pan S (2010) Effect of esterification with fatty acid of β-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method. Food Chem 122:602–609

    Article  CAS  Google Scholar 

  4. Cilla A, Attanzio A, Barbera R, Tesoriere L, Livrea MA (2015) Anti-proliferative effect of main dietary phytosterols and β-cryptoxanthin alone or combined in human colon cancer Caco-2 cells through cytosolic Ca+2—and oxidative stress-induced apoptosis. J Funct Foods 12:282–293

    Article  CAS  Google Scholar 

  5. Wu C, Han L, Riaz H, Wang S, Cai K, Yang L (2013) The chemopreventive effect of β-cryptoxanthin from mandarin on human stomach cells (BGC-823). Food Chem 136:1122–1129

    Article  CAS  Google Scholar 

  6. Nishi K, Muranaka A, Nishimoto S, Kadota A, Sugahara T (2012) Immunostimulatory effect of β-cryptoxanthin in vitro and in vivo. J Funct Foods 4:618–625

    Article  CAS  Google Scholar 

  7. Yamaguchi M (2012) Role of carotenoid β-cryptoxanthin in bone homeostasis. J Biomed Sci 19(36):1–13

    Google Scholar 

  8. Yamaguchi M (2012) Osteogenesis promoter containing β-cryptoxanthin as the active ingredient. US Patent No. 8,148,431

  9. Sunilkumar TKD, Shankaranarayana ML, Sherena PA, Shankaranaarayanan J (2015) Beta-cryptoxanthin from plant source and a process for its preparation. US Patent No. 0,361,040

  10. Takahashi H, Inada Y (2007) Extract containing beta-cryptoxanthin component from persimmon fruit. US Patent No. 116,818

  11. Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  Google Scholar 

  12. Khachik F (2006) Method for production of β-cryptoxanthin and α-cryptoxanthin from commercially available lutein. US Patent No. 7,115,786

  13. Louie MTM, Fuerst EJ (2008) Biosynthesis of beta-cryptoxanthin in microbial hosts using an Arabidopsis thaliana beta-carotene hydroxylase gene. US Patent Application 124,755

  14. Mitra R, Samanta AK, Chaudhuri S, Dutta D (2016) Effect of selected physico-chemical factors on bacterial β-cryptoxanthin degradation: stability and kinetic study. J Food Process Eng. doi:10.1111/jfpe.12379

    Google Scholar 

  15. Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512

    Article  CAS  Google Scholar 

  16. Omar R, Abdullah MA, Hasan MA, Rosfarizan M, Marziah M (2006) Kinetics and modelling of cell growth and substrate uptake in Centella asiatica cell culture. Biotechnol Bioprocess Eng 11:223–229

    Article  CAS  Google Scholar 

  17. Law T, Button DK (1977) Multiple-carbon-source-limited growth kinetics of a marine Coryneform Bacterium. J Bacteriol 129:115–123

    CAS  Google Scholar 

  18. Elibol M, Mavituna F (1999) A kinetic model for actinorhodin production by Streptomyces coelicolor A3 (2). Process Biochem 34:625–631

    Article  CAS  Google Scholar 

  19. Liu JZ, Weng LP, Zhang QL, Xu H, Ji LN (2003) A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem Eng J 14:137–141

    Article  CAS  Google Scholar 

  20. Benkortbi O, Hanini S, Bentahar F (2007) Batch kinetics and modelling of Pleuromutilin production by Pleurotus mutilis. Biochem Eng J 36:14–18

    Article  CAS  Google Scholar 

  21. Bailey J, Olis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw Hill Chemical Engineering Series, New York

    Google Scholar 

  22. Lendenmann U, Snozzi M, Egli T (1996) Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl Environ Microbiol 62:1493–1499

    CAS  Google Scholar 

  23. Goswami G, Chakraborty S, Chaudhuri S, Dutta D (2012) Optimization of process parameters by response surface methodology and kinetic modeling for batch production of canthaxanthin by Dietzia maris NIT-D (accession number: hM151403). Bioprocess Biosyst Eng 35:1375–1388

    Article  CAS  Google Scholar 

  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  25. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall Inc, New Jersey

    Google Scholar 

  26. Don MM, Shoparwe NF (2010) Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem Eng J 49:95–103

    Article  CAS  Google Scholar 

  27. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation. batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–412

    Article  CAS  Google Scholar 

  28. Sirajunnisa AR, Vijayagopal V, Sivaprakash B, Viruthagiri T, Surendhiran D (2016) Optimization, kinetics and antioxidant activity of exopolysaccharide produced from rhizosphere isolate, Pseudomonas fluorescens CrN6. Carbohydr Polym 135:35–43

    Article  CAS  Google Scholar 

  29. Song X, Zhang X, Kuang C, Zhu L, Zhao X (2010) Batch kinetics and modeling of DHA production by S. limacinum OUC88. Food Bioprod Process 88:26–30

    Article  CAS  Google Scholar 

  30. Sinclair CG, Kristiansen B (1987) In: Bu’Lock JD (ed) Fermentation kinetics and modeling. Open University Press, Milton Keynes

    Google Scholar 

  31. MoonPark K, WooSong M, HeungLee J (2008) Production of carotenoids by β-ionone resistant mutant of Xanthophyllomyces dendrorhous using various carbon sources. Biotechnol Bioprocess Eng 13:197–203

    Article  Google Scholar 

  32. Anuar MSM, Tan IKP, Ibrahim S, Ramachandran KB (2008) A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-hydroxyalkonoates) in Pseudomonas putida. Braz J Chem Eng 25:217–228

    Google Scholar 

  33. Han K, Levenspiel O (1988) Extended Monod kinetics for substrate, product and cell inhibition. Biotechnol Bioeng 32:430–437

    Article  CAS  Google Scholar 

  34. Luong JHT (1985) Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng 27:280–285

    Article  CAS  Google Scholar 

  35. Wu ZY, Shi CL, Shi XM (2007) Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World J Microbiol Biotechnol 23:1233–1238

    Article  CAS  Google Scholar 

  36. Gharibzahedi SMT, Razavi SH, Mousavi M (2013) Kinetic analysis and mathematical modeling of cell growth and canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1 on waste molasses hydrolysate. RSC Adv 3(45):23495–23502

    Article  CAS  Google Scholar 

  37. Yoon H, Klinzing G, Blanch HW (1977) Competition for mixed substrates by microbial populations. Biotechnol Bioeng 19:1193–1210

    Article  CAS  Google Scholar 

  38. Reardon KF, Mosteller DC, Roger JDB (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  CAS  Google Scholar 

  39. Abuhamed T, Bayraktar E, Mehmetoglu T, Mehmetoğlu Ü (2004) Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem 39:983–988

    Article  CAS  Google Scholar 

  40. Bai J, Wen JP, Li HM, Jiang Y (2007) Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochem 42:510–517

    Article  CAS  Google Scholar 

  41. Saravanan P, Pakshirajan K, Saha P (2008) Kinetics of phenol and m-cresol biodegradation by an indigenous mixed microbial culture isolated from a sewage treatment plant. J Environ Sci 20:1508–1513

    Article  CAS  Google Scholar 

  42. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394

    Article  CAS  Google Scholar 

  43. Moser A (1985) Kinetics of batch fermentations. In: Rehm HJ, Reed G (eds) Biotechnology. VCH Verlagsgesellschaft mbH, Weinheim, pp 243–283

    Google Scholar 

  44. Aiba S, Shoda M, Nagatani M (1968) Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng 10:845–864

    Article  CAS  Google Scholar 

  45. Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707–723

    Article  CAS  Google Scholar 

  46. Luong JHT (1987) Generalization of monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng 29:242–248

    Article  CAS  Google Scholar 

  47. Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12:679–712

    Article  CAS  Google Scholar 

  48. Yano T, Koga S (1969) Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol Bioeng 11:139–153

    Article  CAS  Google Scholar 

  49. Tseng MMC, Morris W (1975) Kinetics of yeast growth: inhibition-threshold substrate concentrations. Can J Microbiol 21:994–1003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the grant from the National Institute of Technology, Durgapur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debjani Dutta.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, R., Chaudhuri, S. & Dutta, D. Modelling the growth kinetics of Kocuria marina DAGII as a function of single and binary substrate during batch production of β-Cryptoxanthin. Bioprocess Biosyst Eng 40, 99–113 (2017). https://doi.org/10.1007/s00449-016-1678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1678-6

Keywords

Navigation