Skip to main content

Microbial Carotenoids

  • Protocol
  • First Online:
Microbial Carotenoids From Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 898))

Abstract

Carotenoids are among the most widely distributed pigments in nature, and they are exclusively synthesized by plants and microorganisms. These compounds may serve a protective role against many chronic diseases such as cancers, age-related macular degeneration, and cardiovascular diseases and also act as an excellent antioxidant system within cells. Recent advances in the microbial genome sequences and increased understanding about the genes involved in the carotenoid biosynthetic pathways will assist industrial microbiologists in their exploration of novel microbial carotenoid production strategies. Here we present an overview of microbial carotenogenesis from biochemical, proteomic, and biotechnological points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223:7–24

    PubMed  CAS  Google Scholar 

  2. Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    PubMed  CAS  Google Scholar 

  3. Johnson E, Schroeder W (1996) Microbial carotenoids. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 119–178

    Google Scholar 

  4. Liang C et al (2006) Carotenoid biosynthesis in cyanobacteria: structural and evolutionary scenarios based on comparative genomics. Int J Biol Sci 2:197–207

    PubMed  CAS  Google Scholar 

  5. Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299

    PubMed  CAS  Google Scholar 

  6. Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361

    PubMed  CAS  Google Scholar 

  7. Cantrell A et al (2003) Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch Biochem Biophys 412:47–54

    PubMed  CAS  Google Scholar 

  8. Tinkler JH et al (1994) Dietary carotenoids protect human cells from damage. J Photochem Photobiol B 26:283–285

    PubMed  CAS  Google Scholar 

  9. Truscott TG et al (1995) The interaction of carotenoids with reactive oxy-species. Biochem Soc Trans 23:252S

    PubMed  CAS  Google Scholar 

  10. Krinsky NI et al (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201

    PubMed  CAS  Google Scholar 

  11. Bohm F et al (1998) Enhanced protection of human cells against ultraviolet light by antioxidant combinations involving dietary carotenoids. J Photochem Photobiol B 44:211–215

    PubMed  CAS  Google Scholar 

  12. Altermann W, Kazmierczak J (2003) Archean microfossils: a reappraisal of early life on Earth. Res Microbiol 154:611–617

    PubMed  Google Scholar 

  13. Schopf JW (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    PubMed  CAS  Google Scholar 

  14. Edge R et al (1997) The carotenoids as anti-oxidants—a review. J Photochem Photobiol B 41:189–200

    PubMed  CAS  Google Scholar 

  15. El-Agamey A et al (2004) Are dietary carotenoids beneficial? Reactions of carotenoids with oxy-radicals and singlet oxygen. Photochem Photobiol Sci 3:802–811

    PubMed  CAS  Google Scholar 

  16. Liu GY et al (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215

    PubMed  CAS  Google Scholar 

  17. Subczynski WK et al (1991) Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim Biophys Acta 1068:68–72

    PubMed  CAS  Google Scholar 

  18. Kamila K et al (2008) Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer? Biochim Biophys Acta 1778:2334–2340

    Google Scholar 

  19. Peto R et al (1981) Can dietary β-carotene materially reduce human cancer rates? Nature 290:201–208

    PubMed  CAS  Google Scholar 

  20. Greenberg ER et al (1990) A clinical trial of beta-carotene to prevent basal-cell and squamous-cell cancers of the skin. N Engl J Med 323:789–795

    PubMed  CAS  Google Scholar 

  21. Stahl W, Sies H (1996) Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 336:1–9

    PubMed  CAS  Google Scholar 

  22. Hennekens CH (1997) Beta-carotene supplementation and cancer prevention. Nutrition 13:697–699

    PubMed  CAS  Google Scholar 

  23. Moeller SM et al (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr 19:522S–527S

    PubMed  CAS  Google Scholar 

  24. Bone RA et al (2000) Lutein and zeaxanthin in the eyes, serum and diet of human subjects. Exp Eye Res 71:239–245

    PubMed  CAS  Google Scholar 

  25. Haigh GW (1994) High purity beta-carotene. US Patent 5,310,554

    Google Scholar 

  26. Khachik F (2009) Process for isolation, purification, and recrystallization of lutein from saponified marigold oleoresin and uses thereof. US Patent RE409,31

    Google Scholar 

  27. Ausich RL, Sanders DJ (1997) Process for the formation, isolation and purification of comestible xanthophyll crystals from plants. Patent 5648564

    Google Scholar 

  28. Boussiba S, Vonshak A (2000) Procedure for large-scale production of astaxanthin from Haematococcus. US Patent 602,270,1

    Google Scholar 

  29. Venkatesh NS et al (2005) Medium for the production of betacarotene and other carotenoids from Dunaliella salina (ARL 5) and a strain of Dunaliella salina for production of carotenes using the novel media. US patent 693,645,9

    Google Scholar 

  30. Park EK et al (2001) Effects of medium compositions for the growth and the astaxanthin production of Haematococcus pluvialis. Sanop Misaengmul Hakhoechi 29:227–233

    CAS  Google Scholar 

  31. Orosa M et al (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

    CAS  Google Scholar 

  32. Orset S, Young AJ (1999) Low-temperature-induced synthesis of α-carotene in the microalga Dunaliella salina (chlorophyta). J Phycol 35:520–527

    CAS  Google Scholar 

  33. Nakazawa Y et al (2009) Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. J Funct Foods 1:88–97

    CAS  Google Scholar 

  34. Heo SJ et al (2010) Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol 48:2045–2051

    PubMed  CAS  Google Scholar 

  35. Sandesh KB et al (2008) Enhancement of carotenoids by mutation and stress induced carotenogenic genes in Haematococcus pluvialis mutants. Bioresour Technol 99:8667–8673

    Google Scholar 

  36. Sandmann G (1991) Biosynthesis of cyclic carotenoids: biochemistry and molecular genetics of the reaction sequence. Physiol Plant 83:186–193

    CAS  Google Scholar 

  37. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17

    PubMed  CAS  Google Scholar 

  38. Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659

    PubMed  CAS  Google Scholar 

  39. Schmidt DC (2000) Engineering novel carotenoids in microorganisms. Curr Opin Biotechnol 11:255–261

    Google Scholar 

  40. Ducrey Sanpietro LM, Kula MR (1998) Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14:1007–1016

    PubMed  CAS  Google Scholar 

  41. Lee PC, Schmidt DC (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    PubMed  CAS  Google Scholar 

  42. Chemler J et al (2006) Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb Cell Fact 5:20

    PubMed  Google Scholar 

  43. Armstrong GA (1995) Genetic analysis and regulation of carotenoid biosynthesis: structure and function of the crt genes and gene products. In: Blankenship RE et al (eds) Advances in photosynthesis. Kluwer Academic, Dordrecht, pp 1135–1157

    Google Scholar 

  44. Chamovitz D et al (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353

    PubMed  CAS  Google Scholar 

  45. Hirschberg J, Chamovitz D (1994) Carotenoids in cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, pp 559–579

    Google Scholar 

  46. Hodgson DA, Murillo FJ (1993) Genetics of regulation and pathway of synthesis of carotenoids. In: Dworkin M, Kaiser D (eds) Myxobacteria II. American Society for Microbiology, Washington, DC, pp 157–181

    Google Scholar 

  47. Umeno D et al (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78

    PubMed  CAS  Google Scholar 

  48. Simpson KL et al (1964) Biosynthesis of yeast carotenoids. J Bacteriol 88:1688–1694

    PubMed  CAS  Google Scholar 

  49. Goodwin TW (1980) Biosynthesis of carotenoids. In: Goodwin TW (ed) The biochemistry of the carotenoids. Chapman and Hall, London, pp 33–76

    Google Scholar 

  50. Goodwin TW (1993) Biosynthesis of carotenoids: an overview. In: Packer L (ed) Methods in enzymology. Carotenoids, part B: metabolism, genetics and biosynthesis. Academic, San Diego, pp 330–340

    Google Scholar 

  51. Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–167

    PubMed  CAS  Google Scholar 

  52. Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 14:47–92

    PubMed  CAS  Google Scholar 

  53. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA et al (eds) The photochemistry of carotenoids. Kluwer Academic, Dordrecht, pp 39–69

    Google Scholar 

  54. Shaish A et al (1992) Biosynthesis of β-carotene in Dunaliella. In: Lester P (ed) Methods in enzymology. Academic, New York, pp 439–444

    Google Scholar 

  55. Britton G (1998) Overview of carotenoid biosynthesis. In: Britton G et al (eds) Carotenoids: biosynthesis and metabolism. Birkhauser Verlag, Basel, pp 13–140

    Google Scholar 

  56. Fraser PD et al (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135

    PubMed  CAS  Google Scholar 

  57. Antia N, Cheng JY (1983) Evidence for anomalous xanthophyll composition in a clone of Dunaliella tertiolecta (Chlorophyceae). Phycology 22:235–242

    CAS  Google Scholar 

  58. Yamamoto HY et al (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA et al (eds) Advances in photosynthesis: the photochemistry of carotenoids. Kluwer Academic, Dordrecht, pp 293–303

    Google Scholar 

  59. Bramely PM (1985) The in vitro biosynthesis of carotenoids. Adv Lipid Res 21:243–219

    Google Scholar 

  60. Sherman MM et al (1989) Isolation and characterization of isoprene mutants of Escherichia coli. J Bacteriol 171:3619–3628

    PubMed  CAS  Google Scholar 

  61. Misawa N, Shimada H (1997) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59:169–181

    PubMed  CAS  Google Scholar 

  62. Sandmann G, Misawa N (1992) New functional assignment of the carotenogenic genes crtB and crtE with constructs of these genes from Erwinia species. FEMS Microbiol Lett 69:253–257

    PubMed  CAS  Google Scholar 

  63. Shimada H et al (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    PubMed  CAS  Google Scholar 

  64. Humbelin M et al (2002) Genetics of isoprenoid biosynthesis in Paracoccus zeaxanthinifaciens. Gene 297:129–139

    PubMed  CAS  Google Scholar 

  65. Phadwal K (2005) Carotenoid biosynthetic pathway: molecular phylogenies and evolutionary behavior of crt genes in eubacteria. Gene 345:35–43

    PubMed  CAS  Google Scholar 

  66. Steiger S et al (2002) Heterologous production of two unusual acyclic carotenoids, 1,1′-dihydroxy-3,4-didehydrolycopene and 1-hydroxy-3,4,3′,4′-tetradehydrolycopene by combination of the crtC and crtD genes from Rhodobacter and Rubrivivax. J Biotechnol 97:51–58

    PubMed  CAS  Google Scholar 

  67. Rählert N et al (2009) A crtA-related gene from Flavobacterium P99-3 encodes a novel carotenoid 2-hydroxylase involved in myxol biosynthesis. FEBS Lett 10:1605–1610

    Google Scholar 

  68. Tang X et al (2007) Improvement of a CrtO-type of β-carotene ketolase for canthaxanthin production in Methylomonas sp. Metab Eng 9:348–354

    PubMed  CAS  Google Scholar 

  69. Misawa N et al (1991) Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Appl Environ Microbiol 57:1847–1849

    PubMed  CAS  Google Scholar 

  70. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62:1448S–1461S

    PubMed  CAS  Google Scholar 

  71. Athukorala Y et al (2007) Anticoagulant activity of marine green and brown algae collected from Jeju island in Korea. Bioresour Technol 98:1711–1716

    PubMed  CAS  Google Scholar 

  72. Meléndez-Martínez AJ et al (2004) Nutritional importance of carotenoid pigments. Arch Latinoam Nutr 54:149–154

    PubMed  CAS  Google Scholar 

  73. Je JY et al (2009) Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT-Food Sci Technol 42:874–878

    CAS  Google Scholar 

  74. Maeda H et al (2008) Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr 17(Suppl 1):196–199

    PubMed  CAS  Google Scholar 

  75. Yamaguchi M, Shizuoka JP (2006) Osteogenesis promoter containing beta-cryptoxanthin as the active ingredient. US Patent 200,601,061,15

    Google Scholar 

  76. Binns CW et al (2004) The relationship between dietary carotenoids and prostate cancer risk in Southeast Chinese men. Asia Pac J Clin Nutr 13:S117

    Google Scholar 

  77. Ulrich M (2008) The Global Market for Carotenoids, BBC Market Research

    Google Scholar 

  78. Klaui H, Bauerfeind CJ (1981) Carotenoids as food colors. In: Bauerfeind JC (ed) Carotenoids as colorants. Academic, New York, pp 48–292

    Google Scholar 

  79. Francis FJ (2000) Carotenoids as food colorants. Cereal Food World 45:198–203

    CAS  Google Scholar 

  80. Jacobson GK et al (2000) Astaxanthin over-producing strains of Phaffia rhodozyma. Method for their cultivation and their use in animal feeds. Patent 6,015,684

    Google Scholar 

  81. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    PubMed  CAS  Google Scholar 

  82. Miao F et al (2006) Characterization of astaxanthin esters in Haematococcus pluvialis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 352:176–181

    PubMed  CAS  Google Scholar 

  83. Mortensen A et al (1997) Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett 418:91–97

    PubMed  CAS  Google Scholar 

  84. Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146

    CAS  Google Scholar 

  85. Jyonouchi H et al (1993) Studies of immunomodulating actions of carotenoids. II. Astaxanthin enhances in vitro antibody production to T-dependent antigens without facilitating polyclonal B-cell activation. Nutr Cancer 19:269–280

    PubMed  CAS  Google Scholar 

  86. Mayne ST (1996) Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690–701

    PubMed  CAS  Google Scholar 

  87. Chew BP et al (1999) A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res 19:1849–1853

    PubMed  CAS  Google Scholar 

  88. Guerin M et al (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    PubMed  CAS  Google Scholar 

  89. Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174

    PubMed  CAS  Google Scholar 

  90. Bubrick P (1991) Production of astaxanthin from Haematococcus. Bioresour Technol 38:237–239

    CAS  Google Scholar 

  91. Zheng YG et al (2006) Large-scale production of astaxanthin by Xanthophyllomyces dendrorhous. Food Bioproducts Process 84:164–166

    CAS  Google Scholar 

  92. de la Fuente JL et al (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148:144–146

    PubMed  Google Scholar 

  93. Lee JH et al (2008) Fermentation kinetic studies for production of carotenoids by Xanthophyllomyces dendrorhous. J Biotechnol 136:S732–S732

    Google Scholar 

  94. Ranjbar R et al (2008) High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem Eng J 39:575–580

    CAS  Google Scholar 

  95. Krubasik P, Sandmann G (2000) A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 263:423–432

    PubMed  CAS  Google Scholar 

  96. Misawa N et al (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    PubMed  CAS  Google Scholar 

  97. Lee JH et al (2003) Isolation of cDNAs for gonadotropin-II of flounder (Paralichthys olivaceus) and its expressions in adult tissues. J Microbiol Biotechnol 13:710–716

    CAS  Google Scholar 

  98. Fang TJ, Chiou TY (1996) Batch cultivation and astaxanthin production by a mutant of the red yeast Phaffia rhodozyma NCHU-FS501. J Ind Microbiol Biotechnol 16:175–181

    CAS  Google Scholar 

  99. Borowitzka LJ (1992) Beta-Carotene production using algal biotechnology. J Nutr Sci Vitaminol (Tokyo) 38:248–250

    Google Scholar 

  100. Paiva Sergio AR, Russell RM (1999) Beta-Carotene and other carotenoids as antioxidants. J Am Coll Nutr 18:426–433

    Google Scholar 

  101. Ye Z et al (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26:352–360

    PubMed  CAS  Google Scholar 

  102. Yoon SH et al (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J Biotechnol 140:218–226

    PubMed  CAS  Google Scholar 

  103. Ciegler A (1965) Microbial carotenogenesis. In: Wayne WU (ed) Advances in applied microbiology. Academic, New York, pp 1–34

    Google Scholar 

  104. Bhosale P, Gadre RV (2001) Production of β-carotene by a Rhodotorula glutinis mutant in sea water medium. Bioresour Technol 76:53–55

    PubMed  CAS  Google Scholar 

  105. Raja R et al (2007) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523

    PubMed  CAS  Google Scholar 

  106. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  107. Ninet L, Renault J (1979) Carotenoids. In: Peppier HJ, Perlman D (eds) Microbiol technology, 2nd edn. Academic, New York, pp 529–253

    Google Scholar 

  108. Reyes P et al (1964) The mechanism of beta-ionone stimulation of carotenoid and ergosterol biosynthesis in Phycomyces blakesleeanus. Biochim Biophys Acta 90:578–592

    PubMed  CAS  Google Scholar 

  109. Uchiyama S et al (2004) Anabolic effect of beta-cryptoxanthin on bone components in the femoral tissues of aged rats in vivo and in vitro. J Health Sci 50:491–496

    CAS  Google Scholar 

  110. Giovannucci E et al (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 87:1767–1776

    PubMed  CAS  Google Scholar 

  111. Yuan JM et al (2001) Prediagnostic levels of serum β-cryptoxanthin and retinol predict smoking-related lung cancer risk in Shanghai, China. Cancer Epidemiol Biomarkers Prev 10:767–773

    PubMed  CAS  Google Scholar 

  112. Yuan JM et al (2003) Dietary cryptoxanthin and reduced risk of lung cancer: the Singapore Chinese Health Study. Cancer Epidemiol Biomarkers prev 12:890–898

    PubMed  CAS  Google Scholar 

  113. Kohno H et al (2001) Inhibitory effect of mandarin juice rich in beta-cryptoxanthin and hesperidin on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary tumorigenesis in mice. Cancer Lett 174:141–150

    PubMed  CAS  Google Scholar 

  114. Tanaka T et al (2000) Suppression of azoxymethane-induced colon carcinogenesis in male F344 rats by mandarin juices rich in beta-cryptoxanthin and hesperidin. Int J Cancer 88:146–150

    PubMed  CAS  Google Scholar 

  115. Pattison DJ et al (2004) The role of diet in susceptibility to rheumatoid arthritis: a systematic review. J Rheumatol 31:1310–1319

    PubMed  CAS  Google Scholar 

  116. Serrato JO et al (2006) Production of β-cryptoxanthin, a provitamin-A precursor, by Flavobacterium lutescens. J Food Sci 71:E314–E319

    Google Scholar 

  117. Guyomarc’h F et al (2000) Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. J Ind Microbiol Biotechnol 24:64–70

    Google Scholar 

  118. Bhosale P, Bernstein PS (2004) Beta-carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. J Ind Microbiol Biotechnol 31:565–571

    PubMed  CAS  Google Scholar 

  119. Khachik F et al (2007) Partial synthesis of (3R,6′R)-alpha-cryptoxanthin and (3R)-beta-cryptoxanthin from (3R,3′R,6′R)-lutein. J Nat Prod 70:220–226

    PubMed  CAS  Google Scholar 

  120. Baker Rémi TM (2001) Canthaxanthin in aquafeed applications: is there any risk? Trends Food Sci Technol 12:240–243

    Google Scholar 

  121. Palozza P, Krinsky NI (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 297:291–295

    PubMed  CAS  Google Scholar 

  122. Asker O (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58:743–750

    PubMed  CAS  Google Scholar 

  123. Nasri N et al (2010) Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J Biosci Bioeng 109:361–368

    Google Scholar 

  124. Krupa D et al (2010) Extraction, purification and concentration of partially saturated canthaxanthin from Aspergillus carbonarius. Bioresour Technol 101:7598–7604

    PubMed  CAS  Google Scholar 

  125. Ausich RL (1997) Commercial opportunities for carotenoid production by biotechnology. Pure Appl Chem 69:2169–2173

    CAS  Google Scholar 

  126. Khodaiyan F et al (2008) Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochem Eng J 40:415–422

    CAS  Google Scholar 

  127. Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    PubMed  CAS  Google Scholar 

  128. Maeda H et al (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397

    PubMed  CAS  Google Scholar 

  129. Maeda H et al (2007) Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci 56:615–621

    PubMed  CAS  Google Scholar 

  130. Maeda H et al (2007) Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem 55:7701–7706

    PubMed  CAS  Google Scholar 

  131. Tsukui T et al (2007) Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KKAy obese/diabetic mice. J Agric Food Chem 55:5025–5029

    PubMed  CAS  Google Scholar 

  132. Hosokawa M et al (2004) Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARgamma ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta 1675:113–119

    PubMed  CAS  Google Scholar 

  133. Das SK et al (2005) Fucoxanthin induces cell cycle arrest at G0/G1 phase in human colon carcinoma cells through up-regulation of p21WAF1/Cip1. Biochim Biophys Acta 1726:328–335

    PubMed  CAS  Google Scholar 

  134. Yun SM et al (2007) Isolation and identification of an antibacterial substance from sea mustard, Undaria pinnatifida, for Streptococcus mutans. Korean Soc Food Sci Nutr 36:149–154

    CAS  Google Scholar 

  135. Cahyana AH et al (1992) Pyropheophytin A as an antioxidative substance from the marine alga, Arame (Eicenia bicyclis). Biosci Biotechnol Agrochem 18:1533–1535

    Google Scholar 

  136. Yan X et al (1999) Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 63:605–607

    PubMed  CAS  Google Scholar 

  137. Kang HS et al (2003) A new phlorotannins from the brown alga Ecklonia stolonifera. Chem Pharm Bull 51:1012–1014

    PubMed  CAS  Google Scholar 

  138. Khachik F (2005) Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants. US Patent 6,262,284

    Google Scholar 

  139. Sánchez JF et al (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405

    Google Scholar 

  140. Francis GW et al (1975) Variations in the carotenoid content of Chlamydomonas reinhardii throughout the cell cycle. Arch Microbiol 104:249–254

    PubMed  CAS  Google Scholar 

  141. Del Campo JA et al (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    PubMed  Google Scholar 

  142. Shi XM et al (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318

    PubMed  CAS  Google Scholar 

  143. Nelis HJ, De Leenheer AP (1991) Microbial sources of carotenoid pigments used in foods and feeds. J Appl Microbiol 70:181–191

    CAS  Google Scholar 

  144. Khachik F et al (1989) Separation, identification, and quantification of the major carotenoids in extracts of apricots, peaches, cantaloupe, and pink grapefruit by liquid chromatography. J Agric Food Chem 37:1465–1473

    CAS  Google Scholar 

  145. McDERMOTT CB et al (1973) Effect of inhibitors on zeaxanthin synthesis in a Flavobacterium. J Gen Microbiol 77:161–171

    CAS  Google Scholar 

  146. Alcantara S, Sanchez S (1999) Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis. J Ind Microbiol Biotechnol 23:697–700

    PubMed  CAS  Google Scholar 

  147. Masetto A et al (2001) Application of a complete factorial design for the production of zeaxanthin by Flavobacterium sp. J Biosci Bioeng 92:55–58

    PubMed  CAS  Google Scholar 

  148. Sajilata MG et al (2010) Development of efficient supercritical carbon dioxide extraction methodology for zeaxanthin from dried biomass of Paracoccus zeaxanthinifaciens. Sep Purif Technol 71:173–177

    CAS  Google Scholar 

  149. Fresnedo O et al (1991) Carotenoid composition in the cyanobacterium Phormidium laminosum. Effect of nitrogen starvation. FEBS Lett 282:300–304

    PubMed  CAS  Google Scholar 

  150. Yokoyama T et al (1995) Thermozeaxanthins, new carotenoid-glycoside-esters from thermophilic eubacterium Thermus thermophilus. Tetrahedron Lett 36:4901–4904

    CAS  Google Scholar 

  151. Salguero A et al (2005) UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl Microbiol Biotechnol 66:506–511

    PubMed  CAS  Google Scholar 

  152. Jin ES et al (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol Bioeng 81:115–124

    PubMed  CAS  Google Scholar 

  153. Chen F et al (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J Chromatogr A 1064:183–186

    PubMed  CAS  Google Scholar 

  154. Ziegler RG et al (1996) Importance of α-carotene, β-carotene, and other phytochemicals in the etiology of lung cancer. J Natl Cancer Inst 88:612–615

    PubMed  CAS  Google Scholar 

  155. Beatty S et al (2004) Macular pigment optical density and its relationship with serum and dietary levels of lutein and zeaxanthin. Arch Biochem Biophys 430:70–76

    PubMed  CAS  Google Scholar 

  156. Hadden WL et al (1999) Carotenoid composition of marigold (Tagetes erecta) flower extract used as nutritional supplement. J Agric Food Chem 47:4189–4194

    PubMed  CAS  Google Scholar 

  157. Li Y, Li L (2010) Method for producing fucoxanthin. US Patent 201,001,522,86

    Google Scholar 

  158. Wang WJ et al (2005) Isolation of fucoxanthin from the Rhizoid of Laminaria japonica. J Integr Plant Biol 47:1009–1015

    CAS  Google Scholar 

  159. Holden JM et al (1999) Carotenoid content of US foods: an update of the database. J Food Compost Anal 12:169–196

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health Grant EY-11600. We thank Kelly Nelson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vachali, P., Bhosale, P., Bernstein, P.S. (2012). Microbial Carotenoids. In: Barredo, JL. (eds) Microbial Carotenoids From Fungi. Methods in Molecular Biology, vol 898. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-918-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-918-1_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-917-4

  • Online ISBN: 978-1-61779-918-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics