Skip to main content
Log in

Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Enhancing functional gene expression is key to high-level production of active chitinases. For this purpose, the effects of culture cell density, inducer concentration, post-induction time and induction temperatures on the functional expression of two different chitinases (HsChiA1p, a family 18 archaeal chitinase and PtChi19p, a family 19 bacterial chitinase) were comparatively investigated. Results showed that the effect of each parameter on the activity of both chitinases was specific to each enzyme. In addition, different Escherichia coli host strains compatible with the expression in pET systems were assayed for active protein overexpression. When using BL21 Star (DE3), a significant increase of 60 % in expression was observed for the active archaeal chitinase HsChiA1p as compared to that found when using BL21 (DE3), indicating that the rne131 gene mutation efficiently stabilizes the mRNA for HsChiA1p. Using the Codon Adaptation Index value, rare codon analysis of the archaeal HschiA1 and bacterial Ptchi19 genes revealed that both DNA sequences were not optimal for maximal expression in E. coli. Different E. coli host strains possess extra copies of some of the tRNA genes for rare codons. For the Rosetta 2 (DE3) and the BL21 RP (DE3) strains, a significant increase of 40 % was reached for the activity of HsChiA1p and PtChi19p. Finally, as part of the protein still remained insoluble, the best conditions for recovering biologically active protein from inclusion bodies were established for each enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adrangi S, Faramarzi MA (2013) From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 31:1786–1795

    Article  CAS  Google Scholar 

  2. Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29

    Google Scholar 

  3. Yang J, Liang L, Li J, Zhang KQ (2013) Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97:7081–7095

    Article  CAS  Google Scholar 

  4. Inokuma K, Takano M, Hoshino K (2013) Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species. Biochem Eng J 72:24–32

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhou Z, Liu Y, Cao Y, He S, Huo F, Qin C, Yao B, Ringo E (2014) High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture. Appl Microbiol Biotechnol 98:1651–1662

    Article  CAS  Google Scholar 

  6. Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54–60

    Article  CAS  Google Scholar 

  7. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17

    Google Scholar 

  8. Waegeman H, Soetaert W (2011) Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Ind Microbiol Biotechnol 38:1891–1910

    Article  CAS  Google Scholar 

  9. Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298

    Article  CAS  Google Scholar 

  10. Sørensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1

    Article  Google Scholar 

  11. Lee GH, Cooney D, Middelberg APJ, Choe WS (2006) The economics of inclusion body processing. Bioprocess Biosyst Eng 29:73–90

    Article  CAS  Google Scholar 

  12. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310

    Article  CAS  Google Scholar 

  13. García-Fraga B, da Silva AF, López-Seijas J, Sieiro C (2014) Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT 395 in Escherichia coli. Appl Microbiol Biotechnol 98:2133–2143

    Article  Google Scholar 

  14. García-Fraga B, da Silva AF, López-Seijas J, Sieiro C (2015) A novel family 19 chitinase from the marine-derived Pseudoalteromonas tunicata CCUG 44952T: heterologous expression, characterization and antifungal activity. Biochem Eng J 93:84–93

    Article  Google Scholar 

  15. Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  16. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHLP, New York

    Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  18. Díaz S, Pérez-Pomares F, Pire C, Ferrer J, Bonete MJ (2006) Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei. Extremophiles 10:105–115

    Article  Google Scholar 

  19. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  20. Palomares LA, Estrada-Mondaca S, Ramírez OT (2004) In: Balbás P, Lorence A (eds) Methods in molecular biology. Recombinant gene expression: reviews and protocols. Humana Press, Totowa

  21. Fernández-Castané A, Caminal G, López Santín J (2012) Direct measurements of IPTG enable analysis of the induction behavior of E. coli in high cell density cultures. Microb Cell Fact 11:58. doi:10.1186/1475-2859-11-58

    Article  Google Scholar 

  22. Balbás P (2001) Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol Biotechnol 19:251–267

    Article  Google Scholar 

  23. Hu JH, Wang F, Liu CZ (2015) Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli. Bioprocess Biosyst Eng 38:651–659

    Article  CAS  Google Scholar 

  24. Olaofe OA, Burton SG, Cowan DA, Harrison STL (2010) Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of recombinant Escherichia coli. Biochem Eng J 52:19–24

    Article  CAS  Google Scholar 

  25. Tolia NH, Joshua-Tor L (2006) Strategies for protein coexpression in Escherichia coli. Nat Methods 3:55–64

    Article  CAS  Google Scholar 

  26. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  Google Scholar 

  27. Zhang J-D, Li A-T, Xu J-H (2010) Improved expression of recombinant cytochrome P450 monooxygenase in Escherichia coli for asymmetric oxidation of sulfides. Bioprocess Biosyst Eng 33:1043–1049

    Article  CAS  Google Scholar 

  28. Gupta P, Ghosalkar A, Mishra S, Chaudhuri TK (2009) Enhancement of over expression and chaperone assisted yield of folded recombinant aconitase in Escherichia coli in bioreactor cultures. J Biosci Bioeng 107:102–107

    Article  CAS  Google Scholar 

  29. Volontè F, Marinelli F, Gastaldo L, Sacchi S, Pilone MS, Pollegioni L, Molla G (2008) Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E. coli. Protein Expr Purif 61:131–137

    Article  Google Scholar 

  30. López PJ, Marchand I, Joyce SA, Dreyfus M (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol 33:188–199

    Article  Google Scholar 

  31. De Marco A (2013) Recombinant polypeptide production in E. coli: towards a rational approach to improve the yields of functional proteins. Microb Cell Fact 12:101

    Article  Google Scholar 

  32. Novy R, Drott D, Yaeger K, Mierendorf R (2001) Overcoming the codon bias of E. coli for enhanced protein expression. Innovations 12:1–3

    Google Scholar 

  33. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    Article  CAS  Google Scholar 

  34. De Bernardez ClarkE (1998) Refolding of recombinant proteins. Curr Opin Biotechnol 9:157–163

    Article  Google Scholar 

Download references

Acknowledgments

G.-F., B. is grateful to Dr. Martha Clokie and Dr. Didier Philippe for allowing her to make a working visit to the Department of Infection, Immunity and Inflammation of the University of Leicester (United Kingdom) where she improved her knowledge and skills about protein expression. This work was supported by the Xunta de Galicia (Grant Number 10PXIB310278PR). G.-F., B. has a predoctoral fellowship from the Xunta de Galicia-Campus do Mar. L.-S., J. has a predoctoral fellowship from the University of Vigo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sieiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Fraga, B., da Silva, A.F., López-Seijas, J. et al. Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains. Bioprocess Biosyst Eng 38, 2477–2486 (2015). https://doi.org/10.1007/s00449-015-1485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1485-5

Keywords

Navigation