Skip to main content
Log in

Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biochemical methane potential assays, usually run in batch mode, are performed by numerous laboratories to characterize the anaerobic degradability of biogas substrates such as energy crops, agricultural residues, and organic wastes. Unfortunately, the data obtained from these assays lacks common, universal bases for comparison, because standard protocols did not diffuse to the entire scientific community. Results are usually provided as final values of the methane yields of substrates. However, methane production curves generated in these assays also provide useful information about substrate degradation kinetics, which is rarely exploited. A basic understanding of the kinetics of the biogas process may be a first step towards a convergence of the assay methodologies on an international level. Following this assumption, a modeling toolbox containing an exponential model adjusted with a simple data-fitting method has been developed. This model should allow (a) quality control of the assays according to the goodness of fit of the model onto data series generated from the digestion of standard substrates, (b) interpretation of substrate degradation kinetics, and (c) estimate of the ultimate methane yield at infinite time. The exponential model is based on two assumptions: (a) the biogas process is a two-step reaction yielding VFA as intermediate products, and methane as the final product, and (b) the digestible substrate can be divided into a rapidly degradable and a slowly degradable fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rozzi A, Remigi E (2004) Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Rev Environ Sci Biotechnol 3:93–115

    Article  CAS  Google Scholar 

  2. Müller W-R, Frommert I, Jörg R (2004) Standardized methods for anaerobic biodegradability testing. Rev Environ Sci Biotechnol 3:141–158

    Article  Google Scholar 

  3. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934

    Article  CAS  Google Scholar 

  4. VDI 4630 (2006) Fermentation of organic materials. VDI-Gesellschaft Energietechnik, Düsseldorf, ICS 13.030.30; 27.190

  5. Guwy AJ (2004) Equipment used for testing anaerobic biodegradability and activity. Rev Environ Sci Biotechnol 3:131–139

    Article  CAS  Google Scholar 

  6. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3:117–129

    Article  CAS  Google Scholar 

  7. Shelton DR, Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl Environ Microbiol 47:850–857

    CAS  Google Scholar 

  8. Brulé M, Bolduan R, Seidelt S, Schlagermann P, Bott A (2013) Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops. Environ Technol 1–12

  9. Brulé M, Lemmer A, Oechsner H, Jungbluth T, Schimpf U (2008) Effect of adding fibrolitic enzymes to the methane yields of rye silage. Landtechnik 63:178–179

    Google Scholar 

  10. Schimpf U, Valbuena R (2009) Effizienzsteigerung der Biomethanisierung durch Enzymzusätze—increase of biomethanation efficiency by enzyme additives. In: Bornimer Agrartechnische Berichte, Nr. 68, Leibniz Institute for Agricultural Engineering (ATB), Potsdam, Germany. Abschluss Symposium des Biogas Crops Network (BCN)—Wieviel Biogas steckt in Pflanzen, Potsdam, Germany, 07.05.2009, pp 44–56

  11. Lemmer A (2005) Kofermentation von Grüngut in landwirtschaftlichen Biogasanlagen—Cofermentation of grassland cuttings in agricultural biogas plants, PhD-thesis, Institute of Agricultural Engineering, Faculty of Agricultural Sciences, University of Hohenheim, Germany. VDI MEG 435, Verein Deutscher Ingenieure—Fachbereich Max-Eyth-Gesellschaft Agrartechnik

  12. Raposo F, Fernández-Cegrí V, De la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098

    Article  CAS  Google Scholar 

  13. Herrmann C, Heiermann M, Idler C (2011) Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour Technol 102:5153–5161

    Article  CAS  Google Scholar 

  14. Kreuger E, Nges I, Bjornsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44

    Article  CAS  Google Scholar 

  15. Pakarinen A, Maijala P, Jaakkola S, Stoddard F, Kymalainen M, Viikari L (2011) Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnol Biofuels 4:20

    Article  CAS  Google Scholar 

  16. Pakarinen O, Lehtomäki A, Rissanen S, Rintala J (2008) Storing energy crops for methane production: effects of solids content and biological additive. Bioresour Technol 99:7074–7082

    Article  CAS  Google Scholar 

  17. Schumacher B (2008) Untersuchungen zur Aufbereitung und Umwandlung von Energiepflanzen in Biogas and Bioethanol—investigation of the preparation and conversion of energy crops into biogas and bioethanol. PhD-thesis, Institute of Agricultural Engineering, Faculty of Agricultural Sciences, University of Hohenheim, Germany. Mensch und Buch Verlag, Berlin

  18. Mukengele M (2007) Effect of ensiling on the specific methane yield of maize. Landtechnik 62:20–21

    Google Scholar 

  19. Weißbach F, Kuhla S (1995) Stoffverluste bei Silagen und Grünfutter—Entstehende Fehler und Möglichkeiten der Korrektur—material losses of silages and fodder—resulting errors and possibilities for corrections. Übersichten zur Tierernährung 23:189–214

    Google Scholar 

  20. Porter MG, Steen RWJ, Kilpatrick DJ, Gordon FJ, Mayne CS, Poots RE, Unsworth EF, Pippard CJ (1995) Electrometric titration as a method of predicting the chemical composition and corrected dry matter concentration of silage. Anim Feed Sci Technol 56:217–230

    Article  Google Scholar 

  21. Porter MG, Barton D (1997) A comparison of methods for the determination of dry matter concentration in grass silage including an extraction method for water. Anim Feed Sci Technol 68:67–76

    Article  Google Scholar 

  22. Porter MG, Murray RS (2001) The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci 56:405–411

    Article  CAS  Google Scholar 

  23. Weißbach F, Strubelt C (2008) Correcting the dry matter content of grass silages as a substrate for biogas production. Landtechnik 63:210–211

    Google Scholar 

  24. Weißbach F, Strubelt C (2008) Correcting the dry matter content of maize silages as a substrate for biogas production. Landtechnik 63:82–83

    Google Scholar 

  25. Fahey GC, Hussein HS (1999) Forty years of forage quality research: accomplishments and impact from an animal nutrition perspective. Crop Sci 39:4–12

    Article  Google Scholar 

  26. Beuvink JM, Kogut J (1993) Modeling gas production kinetics of grass silages incubated with buffered ruminal fluid. J Anim Sci 71:1041–1046

    CAS  Google Scholar 

  27. Mertens DR (2005) In: Dijkstra J, Forbes J, France J (eds) Quantitative aspects of ruminant digestion and metabolism, 2nd edn. CABI Publishing, Cambridge, pp 13–47

  28. Gerber M, Span R (2008) An analysis of available mathematical models for anaerobic digestion of organic substances for production of biogas. International Gas Union (IGU), International Gas Union Research Conference (IGRC), Paris, October 8–10, 2008

  29. Lyberatos G, Skiadas IV (1999) Modelling of anaerobic digestion—a review. Glob Nest 1:63–76

    Google Scholar 

  30. Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21:411–490

    Article  CAS  Google Scholar 

  31. Simeonov IS (1999) Mathematical modeling and parameters estimation of anaerobic fermentation processes. Bioprocess Eng 21:377–381

    Article  CAS  Google Scholar 

  32. Lübken M, Gehring T, Wichern M (2010) Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Appl Microbiol Biotechnol 85:1643–1652

    Article  Google Scholar 

  33. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manage 28:939–951

    Article  CAS  Google Scholar 

  34. Lauwers J, Appels L, Thompson IP, Degrève J, Van Impe JF, Dewil R (2013) Mathematical modelling of anaerobic digestion of biomass and waste: power and limitations. Progress Energy Combust Sci 39:383–402

    Article  Google Scholar 

  35. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Progress Energy Combust Sci 34:755–781

    Article  CAS  Google Scholar 

  36. Tomei MC, Braguglia CM, Cento G, Mininni G (2009) Modeling of anaerobic digestion of sludge. Crit Rev Environ Sci Technol 39:1003–1051

    Article  CAS  Google Scholar 

  37. Barlaz MA, Ham RK, Schaefer DM, Isaacson R (1990) Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics. Crit Rev Environ Control 19:557–584

    Article  CAS  Google Scholar 

  38. Elagroudy SA, Warith MA (2009) Biogas recovery from landfills. In: Dubois E, Mercier A (eds) Energy recovery. Nova Science Publishers, Inc., New York, pp 1–67

    Google Scholar 

  39. Hartz KE, Ham RK (1982) Gas generation rates of landfill samples. Cons Recycl 5:133–147

    Article  CAS  Google Scholar 

  40. Kamalan H, Sabour M, Shariatmadari N (2011) A review on available landfill gas models. J Environ Sci Technol 4:79–92

    Article  CAS  Google Scholar 

  41. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model No 1 (ADM1). Water Sci Technol 45:65–73

    CAS  Google Scholar 

  42. Chen YR, Hashimoto AG (1980) Substrate utilization kinetic model for biological treatment process. Biotechnol Bioeng 22:2081–2095

    Article  CAS  Google Scholar 

  43. Monod J (1949) The growth of bacterial cultures. Ann Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  44. Lawrence AW, McCarty PL (1969) Kinetics of methane fermentation in anaerobic treatment. J WPCF 41:R1–R17

    CAS  Google Scholar 

  45. Contois DE (1959) Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J Gen Microbiol 21:40–50

    Article  CAS  Google Scholar 

  46. Okpokwasili GC, Nweke CO (2005) Microbial growth and substrate utilization kinetics. Afr J Biotechnol 5:305–317

    Google Scholar 

  47. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung—the kinetics of invertase action. Biochem Z 49:333–369

    CAS  Google Scholar 

  48. Bekins BA, Warren E, Godsy EM (1998) A Comparison of zero-order, first-order, and Monod biotransformation models. Ground Water 36:261–268

    Article  CAS  Google Scholar 

  49. Lopes WS, Leite VD, Prasad S (2004) Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresour Technol 94:261–266

    Article  CAS  Google Scholar 

  50. Veeken A, Hamelers B (1999) Effect of temperature on hydrolysis rates of selected biowaste components. Bioresour Technol 69:249–254

    Article  CAS  Google Scholar 

  51. Balat M, Balat H (2009) Biogas as a renewable energy source—a review. Energy Sour 31:1280–1293

    Article  CAS  Google Scholar 

  52. Veeken A, Kalyuzhnyi S, Scharff H, Hamelers B (2000) Effect of pH and VFA on hydrolysis of organic solid waste. J Environ Eng 126:1076–1081

    Article  CAS  Google Scholar 

  53. El-Mashad HM (2013) Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour Technol 132:305–312

    Article  CAS  Google Scholar 

  54. Tong X, Smith LH, McCarty PL (1990) Methane fermentation of selected lignocellulosic materials. Biomass 21:239–255

    Article  CAS  Google Scholar 

  55. Converti A, Del Borghi A, Zilli M, Arni S, Del Borghi M (1999) Anaerobic digestion of the vegetable fraction of municipal refuses: mesophilic versus thermophilic conditions. Bioprocess Eng 21:371–376

    Article  CAS  Google Scholar 

  56. Jokela JPY, Vavilin VA, Rintala JA (2005) Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation. Bioresour Technol 96:501–508

    Article  CAS  Google Scholar 

  57. Owens JM, Chynoweth DP (1993) Biochemical methane potential of municipal solid waste (MSW) components. Water Sci Technol 27:1–14

    Article  CAS  Google Scholar 

  58. Turick CE, Peck MW, Chynoweth DP, Jerger DE, White EH, Zsuffa L, Andy Kenney W (1991) Methane fermentation of woody biomass. Bioresour Technol 37:141–147

    Article  CAS  Google Scholar 

  59. Torre AD, Stephanppoulos G (1986) Mixed culture model of anaerobic digestion: application to the evaluation of startup procedures. Biotechnol Bioeng 28:1106–1118

    Article  CAS  Google Scholar 

  60. Shin H-S, Song Y-C (1995) A model for evaluation of anaerobic degradation characteristics of organic waste: focusing on kinetics, rate-limiting step. Environ Technol 16:775–784

    Article  CAS  Google Scholar 

  61. Muha I, Zielonka S, Lemmer A, Schönberg M, Linke B, Grillo A, Wittum G (2012) Do two-phase biogas plants separate anaerobic digestion phases?—a mathematical model for the distribution of anaerobic digestion phases among reactor stages. Bioresour Technol 132:414–418

    Article  Google Scholar 

  62. Hobson PN, Wheatley AD (1993) Anaerobic digestion—modern theory and practice. Chapter 2—the microbiology and biochemistry of anaerobic digestion. Elsevier Applied Science, London, pp 7–72

    Google Scholar 

  63. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    Article  CAS  Google Scholar 

  64. Diekert G, Wohlfarth G (1994) Metabolism of homoacetogens. Antonie Van Leeuwenhoek 66:209–221

    Article  CAS  Google Scholar 

  65. Mairet F, Bernard O, Cameron E, Ras M, Lardon L, Steyer J-P, Chachuat B (2011) Three-reaction model for the anaerobic digestion of microalgae. Biotechnol Bioeng 109:415–425

    Article  Google Scholar 

  66. Weiland P (2001) VDI-Berichte Nr. 1620, Grundlagen der Methangärung—Biologie und Substrate—basics of methane fermentation—biology and substrates. Biogas als regenerative Energie—Stand und Perspektiven, Hannover, Germany, 19–20.06.2001. Verein Deutscher Ingenieure e.V. (VDI), Düsseldorf, Germany, pp 19–32

  67. Noike T, Endo G, Chang J-E, Yaguchi J-I, Matsumoto J-I (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27:1482–1489

    Article  CAS  Google Scholar 

  68. Gioannis GD, Muntoni A, Cappai G, Milia S (2009) Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Manage 29:1026–1034

    Article  Google Scholar 

  69. He P-J, Lü F, Shao L-M, Pan X-J, Lee D-J (2006) Enzymatic hydrolysis of polysaccharide-rich particulate organic waste. Biotechnol Bioeng 93:1145–1151

    Article  CAS  Google Scholar 

  70. Callander IJ, Barford JP (1983) Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. I. Methodology. Biotechnol Bioeng 25:1947–1957

    Article  CAS  Google Scholar 

  71. Schofield P, Pitt RE, Pell AN (1994) Kinetics of fiber digestion from in vitro gas production. J Anim Sci 72:2980–2991

    CAS  Google Scholar 

  72. Rao MS, Singh SP, Singh AK, Sodha MS (2000) Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Appl Energy 66:75–87

    Article  CAS  Google Scholar 

  73. Luna del Risco M, Normak A, Orupõld K (2011) Biochemical methane potential of different organic wastes and energy crops from Estonia. Agronom Res 9:331–342

    Google Scholar 

  74. Kusch S, Oechsner H, Jungbluth T (2008) Biogas production with horse dung in solid-phase digestion systems. Bioresour Technol 99:1280–1292

    Article  CAS  Google Scholar 

  75. Mittweg G, Oechsner H, Hahn V, Lemmer A, Reinhardt-Hanisch A (2012) Repeatability of a laboratory batch method to determine the specific biogas and methane yields. Eng Life Sci 12:270–278

    Article  CAS  Google Scholar 

  76. Helffrich D, Oechsner H (2003) Comparison of different laboratory techniques for the digestion of biomass. Landtechnik 58:148–149

    Google Scholar 

  77. Helffrich D, Morar M, Lemmer A, Oechsner H, Steingaß H (2005) Patent Nr. DE10227685B4, 30.06.2005. Laborverfahren zur Bestimmung der Qualität und Quantität des beim anaeroben Abbau organischer Substanzen entstehenden Biogases im Batch-Verfahren - Laboratory process to determine the amount and quality of biogas generated from the degradation of organic substances in batch digestion

  78. Levenberg K (1944) A method for the solution of certain problems in least squares. Quart Appl Math 2:164–168

    Google Scholar 

  79. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  80. Mukengele M, Brule M, Oechsner H (2005) Influence of process parameters on the kinetics and methane yields of energy crops. The future of biogas for sustainable energy production in Europe. In: Proceedings of the 7th FAO/SREN Workshop, Uppsala, Sweden, 30. November-02. December 2005

  81. Mottet A, Steyer JP, Déléris S, Vedrenne F, Chauzy J, Carrère H (2009) Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochem Eng J 46:169–175

    Article  CAS  Google Scholar 

  82. Glissmann K, Conrad R (2002) Saccharolytic activity and its role as a limiting step in methane formation during the anaerobic degradation of rice straw in rice paddy soil. Biol Fertil Soils 35:62–67

    Article  CAS  Google Scholar 

  83. Brulé M, Vogtherr J, Lemmer A, Oechsner H, Jungbluth T (2011) Effect of enzyme addition on the methane yields of effluents from a full-scale biogas plant. Landtechnik 66:50–52

    Google Scholar 

  84. Vogtherr J, Lemmer A, Oechsner H, Jungbluth T (2007) Restgaspotentiale NaWaRo-beschickter Biogasanlagen in Baden-Württemberg—Residual methane potential of biogas plants fed with energy crops in Baden-Württemberg. Fortschritt beim biogas. University of Hohenheim, Stuttgart, Germany. 18–21 September 2007, pp 71–75

Download references

Acknowledgments

The authors would like to express their gratitude to the Doctorate Program of the Faculty of Agricultural Sciences of the University of Hohenheim for granting a Ph.D. scholarship to Mathieu Brulé. Thanks a lot to Dr. Simon Zielonka, scientific assistant at the State Institute of Agricultural Engineering and Bioenergy at the University of Hohenheim, for commenting and correcting the first draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Brulé.

Appendix

Appendix

A. Modeling toolbox

B. Optimset values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brulé, M., Oechsner, H. & Jungbluth, T. Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays. Bioprocess Biosyst Eng 37, 1759–1770 (2014). https://doi.org/10.1007/s00449-014-1150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1150-4

Keywords

Navigation