Skip to main content

Advertisement

Log in

Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The anaerobic fermentation process has achieved growing importance in practice in recent years. Anaerobic fermentation is especially valuable because its end product is methane, a renewable energy source. While the use of renewable energy sources has accelerated substantially in recent years, their potential has not yet been sufficiently exploited. This is especially true for biogas technology. Biogas is created in a multistage process in which different microorganisms use the energy stored in carbohydrates, fats, and proteins for their metabolism. In order to produce biogas, any organic substrate that is microbiologically accessible can be used. The microbiological process in itself is extremely complex and still requires substantial research in order to be fully understood. Technical facilities for the production of biogas are thus generally scaled in a purely empirical manner. The efficiency of the process, therefore, corresponds to the optimum only in the rarest cases. An optimal production of biogas, as well as a stable plant operation requires detailed knowledge of the biochemical processes in the fermenter. The use of mathematical models can help to achieve the necessary deeper understanding of the process. This paper reviews both the history of model development and current state of the art in modeling anaerobic digestion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure – Influence of biomass composition on the methane yield. Agr Ecosyst Environ 118:173–182

    Article  CAS  Google Scholar 

  • Andrews JF (1969) Dynamic model of the anaerobic digestion process. ASCE J Sanit Engineer Div 95(SA1):95–116

    CAS  Google Scholar 

  • Andrews JF, Graef SP (1971) Dynamic modeling and simulation of the anaerobic digestion process. Adv Chem Ser 105:126–162

    Article  CAS  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3:117–129

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focussing on ammonia inhibition. Biotechnol Bioeng 42:159–166

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372

    Article  CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1. IWA, London

    Google Scholar 

  • Batstone DJ, Pind PF, Angelidaki I (2003) Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol Bioeng 84:195–204

    Article  CAS  Google Scholar 

  • Batstone DJ, Keller J, Steyer JP (2006) A review of ADM1 extensions, applications, and analysis 2002–2005. Water Sci Technol 54:1–10

    CAS  Google Scholar 

  • Bauer A, Leonhartsberger C, Bösch P, Amon B, Friedl A, Amon T (2009) Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Techn Environ. doi:10.1007/s10098-009-0236-1

    Google Scholar 

  • Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA anaerobic digestion model no. 1. Water Res 39:171–183

    Article  CAS  Google Scholar 

  • Bolle WL, van Breugel J, Eybergen GC, Kossen NWF, van Gils W (1986) Kinetics of anaerobic purification of industrial wastewater. Biotechnol Bioeng 28:542–548

    Article  CAS  Google Scholar 

  • Boone BZ, Bryant MP (1980) Propionate-degrading bacterium, syntrophobacter wolinii sp. Nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    CAS  Google Scholar 

  • Boyle WC (1977) Energy recovery from sanitary landfills-a review. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon, Oxford, pp 119–138

    Google Scholar 

  • Bryant MP (1979) Microbial methane production – Theoretical Aspects. J Anim Sci 48:193–201

    CAS  Google Scholar 

  • Bryant MP, Wollin EA, Wollin MJ, Wolfe RS (1967) Methanobacillus smellaszii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–24

    CAS  Google Scholar 

  • Buswell AM, Boruff CS (1932) The relation between the chemical composition of organic matter and the quality and quantity of gas produced during sludge digestion. Sewage Works J 4:454–460

    CAS  Google Scholar 

  • Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552

    Article  CAS  Google Scholar 

  • Chen YR, Hashimoto AG (1980) Substrate utilization kinetic model for biological treatment process. Biotechnol Bioeng 22:2081–2095

    Article  CAS  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energ 22:1–8

    Article  CAS  Google Scholar 

  • Costello DJ, Greenfield PF, Lee PL (1991) Dynamic modelling of a single-stage high-rate anaerobic reactor–I. Model derivation. Water Res 25:847–858

    Article  CAS  Google Scholar 

  • Duarte AC, Anderson GK (1982) Inhibition modelling in anaerobic digestion. Water Sci Technol 14:749–763

    CAS  Google Scholar 

  • Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J WPCF 53:352–366

    CAS  Google Scholar 

  • Feng Y, Behrendt J, Wendland C, Otterpohl R (2006) Parameter analysis and discussion of the IWA ADM 1 for the anaerobic digestion of blackwater. Water Sci Technol 54:139–148

    CAS  Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  • Hansen TL, Sommer SG, Gabriel S, Christensen TH (2006) Methane production during storage of anaerobically digested municipal organic waste. J Environ Qual 3:830–836

    Article  Google Scholar 

  • Harris RF, Adams SS (1979) Determination of the carbon-bound electron composition of microbial cells and metabolites by dichromate oxidation. Appl Environ Microbiol 37:237–243

    CAS  Google Scholar 

  • Hartmann H (2001) Ernte und Aufbereitung. In: Kaltschmitt M, Hartmann H (eds) Energie aus Biomasse–Grundlagen, Techniken und Verfahren. Springer, Heidelberg, pp 155–196

    Google Scholar 

  • Hill DT (1982) A comprehensive dynamic model for animal waste methanogenesis. Trans ASAE 25:1374–1380

    Google Scholar 

  • Hill DT, Barth CL (1977) A dynamic model for simulation of animal waste digestion. J WPCF 10:2129–2143

    Google Scholar 

  • Hobson PN (1983) The kinetics of anaerobic digestion of farm wastes. J Chem Technol Biot 33:1–20

    Google Scholar 

  • Hobson PN (1987) A model of some aspects of microbial degradation of particulate substrates. Ferment Technol 65:431–439

    Article  CAS  Google Scholar 

  • Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using 14C-tracers. J Water Poll Control Fed 37:178–192

    CAS  Google Scholar 

  • Kalfas H, Skiadas I, Gavala H, Stamatelatou K, Lyberatos G (2006) Application of ADM1 for the simulation of anaerobic digestion of olive pulp under mesophilic and thermophilic condition. Water Sci Technol 54:149–156

    Article  CAS  Google Scholar 

  • Kato MT, Field JA, Lettinga G (1993) Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiol Lett 114:317–324

    Article  CAS  Google Scholar 

  • Kleinstreuer C, Poweigha T (1982) Dynamic simulator for anaerobic digestion process. Biotechnol Bioeng 24:1941–1951

    Article  CAS  Google Scholar 

  • Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B (2008) Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31:190–205

    Article  CAS  Google Scholar 

  • Loomis R, Lafitte HR (1987) The carbon economy of a maize crop exposed to elevated CO2 concentrations and water stress, as determined from elemental analyses. Field Crop Res 17:63–74

    Article  Google Scholar 

  • Lübken M, Wichern M, Schlattmann M, Gronauer A, Horn H (2007) Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res 41:4085–4096

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius S (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol R 66:506–577

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2008) Brock biology of microorganisms. Benjamin Cummings, San Francisco

    Google Scholar 

  • Marsili-Libelli S, Nardini M (1985) Stability and sensitivity analysis of anaerobic digestion models. Environ Technol Lett 6:601–609

    Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135

    Article  CAS  Google Scholar 

  • Moletta R, Verrier D, Albagnac G (1986) Dynamic modelling of anaerobic digestion. Water Res 20:427–434

    Article  CAS  Google Scholar 

  • Mosey FE (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15:209–232

    CAS  Google Scholar 

  • Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27:1482–1489

    Article  CAS  Google Scholar 

  • O’Sullivan CA, Burrell PC, Clarke WP, Blackall LL (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioeng 92:871–878

    Article  Google Scholar 

  • Palmowski LM, Mundhecke RC, Muller JA, Schwedes HJ (2001) Importance of substrate surface area in the kinetics of organic solids degradation. In: van Lier J, Lubberding H (eds) Anaerobic digestion IX: selected proceedings of the 9th world congress on anaerobic digestion. IWA, London, pp 163–168

    Google Scholar 

  • Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Env Contr 21:411–490

    Article  CAS  Google Scholar 

  • Perrier M, Dochain D (1992) An analysis of the impact of controlled variables selection on the operation of anaerobic digestion processes. In: Karim M, Stephanopoulos G (eds) Modeling and control of biotechnical processes. Elsevier, Oxford, pp 65–70

    Google Scholar 

  • Popoff L (1875) Über die Sumpfgasgährung. Pflug Arch Eur J Phy 10:113–146

    Article  Google Scholar 

  • Rotter BE, Barry DA, Gerhard JI, Small JS (2009) Parameter and process significance in mechanistic modeling of cellulose hydrolysis. Bioresource Technol 99:5738–5748

    Article  Google Scholar 

  • Qu X, Vavilin VA, Mazéas L, Lemunier M, Duquennoi C, He PJ, Bouchez T (2009) Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis. Waste Manage 29:1828–1837

    Article  CAS  Google Scholar 

  • Ramirez I, Mottet A, Carrère H, Déléris S, Vedrenne F, Steyer JP (2009a) Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Res 43:3479–3492

    Article  CAS  Google Scholar 

  • Ramirez I, Volcke EIP, Rajinikanth R, Steyer JP (2009b) Modeling microbial diversity in anaerobic digestion through an extended ADM1 model. Water Res 43:2787–2800

    Article  CAS  Google Scholar 

  • Rozzi A, Merlini S, Passino R (1985) Development of a four population model of the anaerobic degradation of carbohydrates. Environ Technol Lett 6:610–619

    Article  CAS  Google Scholar 

  • Sanders WTM, Geerink M, Zeeman G, Lettinga G (2000) Anaerobic hydrolysis kinetics of particulate substrates. Water Sci Technol 41:17–24

    CAS  Google Scholar 

  • Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136:77–90

    Article  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  Google Scholar 

  • Siegrist H, Renggli D, Gujer W (1993) Mathematical modelling of anaerobic mesophilic sewage sludge treatment. Water Sci Technol 27:25–36

    CAS  Google Scholar 

  • Siegrist H, Vogt D, Garcia-Heras JL, Gujer W (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123

    Article  CAS  Google Scholar 

  • Sinechal XJ, Installe MJ, Nyns EJ (1979) Differentiation between acetate and higher volatile acids in the modeling of the anaerobic biomethanation process. Biotechnol Lett 1:309–314

    Article  CAS  Google Scholar 

  • Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879

    CAS  Google Scholar 

  • Smith MR, Mah RA (1980) Acetate as sole carbon and energy source for growth of Methanosarcina strain 227. Appl Environ Microbiol 39:993–999

    CAS  Google Scholar 

  • Song H (2003) Characterisation of microbial community structure within anaerobic biofilms on municipal solid waste. Dissertation, University of Queensland

  • Song H, Clarke WP, Blackall LL (2005) Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose. Biotechnol Bioeng 91:369–378

    Article  CAS  Google Scholar 

  • Speece RE (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ Sci Technol 17:416A–426A

    Article  CAS  Google Scholar 

  • Take H, Andou Y, Nakamura Y, Kobayashi F, Kurimoto Y, Kuwahara M (2006) Production of methane gas from Japanese cedar chips pretreated by various delignification methods. Biochem Eng J 28:30–35

    Article  CAS  Google Scholar 

  • Talbot G, Topp E, Palin MF, Masse DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537

    Article  CAS  Google Scholar 

  • Tong X, Smith LH, McCarthy PL (1990) Methane fermentation of selected lignocellulosic materials. Biomass 21:239–255

    Article  CAS  Google Scholar 

  • Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Off Anal Chem 50:50–59

    Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technol 56:229–237

    Article  CAS  Google Scholar 

  • Vavilin VA, Rytov SV, Lokshina LY, Pavlostathis SG, Barlaz MA (2002) Distributed model of solid waste anaerobic digestion: effects of leachate recirculation and pH adjustment. Biotechnol Bioeng 81:66–73

    Article  Google Scholar 

  • Veeken A, Hamelers B (1999) Effect of temperature on the hydrolysis rate of selected biowaste components. Bioresource Technol 69:249–255

    Article  CAS  Google Scholar 

  • Volta A (1778) Lettres de Mr. Alexandre Volta sur l'air inflammable des marais. Heitz, Strassburg

    Google Scholar 

  • Wagner D, Pfeiffer EM (1997) Two temperature optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiol Ecol 22:145–153

    Article  CAS  Google Scholar 

  • Weiland P (2006) Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng Life Sci 6:302–309

    Article  CAS  Google Scholar 

  • Wett B, Eladawy A, Ogurek M (2006) Description of nitrogen incorporation and release in ADM1. Water Sci Technol 54:67–76

    CAS  Google Scholar 

  • Wichern M, Gehring T, Fischer K, Lübken M, Koch K, Gronauer A, Horn H (2009) Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1. Bioresource Technol 100:1675–1681

    Article  CAS  Google Scholar 

  • Wiesmann U (1988) Kinetik und Reaktionstechnik der anaeroben Abwasserreinigung. Chem Ing Tech 60:464–474

    Article  CAS  Google Scholar 

  • Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York

    Google Scholar 

  • Yang ST, Okos MR (1987) Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens. Biotechnol Bioeng 30:661–667

    Article  CAS  Google Scholar 

  • Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Lübken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lübken, M., Gehring, T. & Wichern, M. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Appl Microbiol Biotechnol 85, 1643–1652 (2010). https://doi.org/10.1007/s00253-009-2365-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2365-1

Keywords

Navigation